Произведение векторов и его свойства

Изложение понятия и физического смысла скалярного и векторного произведения векторов в системе координат. Изучение и доказательства их свойств. Приведение некоторых метрических формул. Вычисление площади параллелограмма, построенного на векторах.

Подобные документы

  • Алгоритм решения проблемы поиска собственных значений и собственных векторов. Обзор технологий разработки параллельного обеспечения. Реализация параллельных программ с использованием технологий OpenMP и CUDA. Место задачи в современном естествознании.

    курсовая работа, добавлен 24.09.2021

  • Рассмотрение обобщения векторного метода вычисления индекса Пуанкаре на многомерный случай (при некоторых ограничениях), пример, иллюстрирующий данный метод. Искомый индекс плоского векторного поля. Наиболее весомая ненулевая линейная компонента.

    статья, добавлен 26.04.2019

  • Плоскость как поверхность или фигура, образованная кинематическим движением образующей по направляющей, представляющей собой прямую. Фиксированная произвольная декартова система координат. Условия параллельности и перпендикулярности нормальных векторов.

    презентация, добавлен 10.11.2014

  • Криволинейные системы координат. Векторы и тензоры, их преобразования при поворотах системы координат. Свойства тензоров второго ранга, символ Леви-Чивита. Преобразование тензорных величин при инверсии. Взаимно однозначное соответствие между переменными.

    дипломная работа, добавлен 18.09.2015

  • Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.

    учебное пособие, добавлен 23.11.2012

  • Рассмотрение почти контактных метрических многообразий с нулевым тензором Схоутена. Определение дифференцирования допустимых тензорных полей. Использование адаптированных координат. Векторные поля линейно независимые в области определения нужной карты.

    статья, добавлен 02.03.2018

  • Описание класса простых и класса составных фреймов Парсеваля. Необходимые и достаточные условия простоты фреймов, не содержащих нулевых или коллинеарных векторов, в конечномерных пространствах. Величина взаимной когерентности векторов фрейма Парсеваля.

    статья, добавлен 31.05.2013

  • Определение производных первого порядка. Порядок решения системы уравнений методом Крамера. Построение графика функции, используя исследования функции y = x3–2,5x2–2x+1,5. Поиск неопределенных интегралов. Определение координат векторов АВ, ВС, СА.

    контрольная работа, добавлен 23.04.2013

  • Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.

    курсовая работа, добавлен 30.11.2012

  • Определение абсолютной величины смешанного произведения векторов. Рассмотрение и характеристика условия параллельности и перпендикулярности прямых. Ознакомление с операциями сложения матриц. Исследование и анализ процесса умножения матрицы на число.

    лабораторная работа, добавлен 29.11.2015

  • История возникновения понятий шара и шаровой (сферической) поверхности, их определение как геометрических фигур. Рассмотрение уравнения сферы и основных геометрических формул (площади сферы, объема шара, площади сегмента сферы). Теоремы и доказательства.

    реферат, добавлен 02.04.2012

  • Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.

    учебное пособие, добавлен 08.12.2013

  • Скалярные и векторные величины, линейные операции над ними в координатной форме, координатный базис, правило паралеллограма. Скалярное произведение векторов, их разложение по ортам в пространстве. Сонаправленные и противоположные колинеарные вектора.

    методичка, добавлен 01.02.2013

  • Отличительные черты скалярных и векторных физических величин. Градиент скалярного поля, дивергенция векторного поля и теорема Остроградского-Гаусса. Описание ротора векторного поля и теоремы Стокса. Задачи на использование метода оператора набла.

    реферат, добавлен 21.06.2016

  • Понятие линейного пространства, поиск конечной максимально-независимой системы векторов. Связь между базисами n-мерного пространства. Матрица перехода от одного базиса к другому. Преобразование координат вектора. Невырожденная квадратная матрица порядка.

    лекция, добавлен 06.09.2017

  • Вычисление углов в треугольнике по дискреционным углам и определение длины его сторон. Проектирование трапецией фермерского участка. Вычисление координат точек и контроль площади. Проектирование участка земли под малое предприятие площадью 0,5 га.

    контрольная работа, добавлен 31.10.2017

  • Скалярные и векторные поля. Циркуляция векторного поля вдоль кривой. Формула Гаусса-Остроградского, дивергенция. Формула Стокса, ротор векторного поля. Потенциальное поле и его свойства. Соленоидальное поле и его свойства. Расчет векторного потенциала.

    курсовая работа, добавлен 24.03.2009

  • Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.

    методичка, добавлен 19.09.2015

  • Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.

    шпаргалка, добавлен 18.03.2013

  • Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.

    методичка, добавлен 14.12.2010

  • Доказательства классических теорем о неподвижных точках (в том числе и в бесконечномерном случае), их применения в теории дифференциальных уравнений. Сущность теоремы Банаха о сжатии полных метрических пространств, вычисление теоремы Брауэра для круга.

    дипломная работа, добавлен 22.04.2011

  • Понятие сферической индикатрисы бинормалей пространственной кривой. Вычисление радиуса-вектора центра соприкасающейся сферы графика. Подсчитывание векторов сопровождающего репера неровности, ее кривизны и закручивания. Характеристика винтовой линии.

    контрольная работа, добавлен 25.04.2016

  • Вектор как одно из фундаментальных понятий современной математики, тензор - его обобщение. Векторы и их применение в жизни человека. Использование скалярного произведения в элементарных и абстрактных областях математики, физики и прикладных наук.

    статья, добавлен 27.02.2019

  • Примеры вычислений поверхностного интеграла. Использование формул Остроградского-Гаусса и Стокса для вычисления площади поверхности и координат центра масс, моментов инерции материальных поверхностей с поверхностной плотностью распределения массы.

    презентация, добавлен 29.03.2021

  • Методика и основные этапы решения матричных уравнений, порядок проведения проверки. Составление уравнения прямой и каждой из сторон треугольника. Вычисление расстояния между двумя точками. Нахождение собственных чисел и собственных векторов матрицы.

    контрольная работа, добавлен 10.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.