Платоновы тела

История изучения правильных многогранников. Космический кубок Кеплера. Анализ его теории о связи многогранников с шестью открытыми к тому времени планетами Солнечной системы. Основные виды правильных многогранников в трёхмерном евклидовом пространстве.

Подобные документы

  • Параллельность и перпендикулярность прямых и плоскостей. Свойства многогранников, их основные виды. Нахождение площади призмы, параллелепипеда, пирамиды, трапеции и ромба, их высоты и сторон, боковых ребер и граней. Векторы в пространстве, их сложение.

    учебное пособие, добавлен 01.04.2013

  • Многогранник как тело, поверхность которого состоит из конечного числа плоских многоугольников, его основные свойства. Наука стереометрия - раздел геометрии, изучающий свойства фигур в пространстве. Описание видов призмы, параллелепипеда, пирамиды.

    презентация, добавлен 26.10.2014

  • Основные понятия правильной фигуры, их свойства, периметр, а также площадь геометрической фигуры. Основные виды правильных фигур (шестиугольник, треугольник, квадрат, пятиугольник), понятие их равенства и свойств. Задачи для урока по математике.

    лекция, добавлен 14.08.2014

  • Изложение основ классической теории сводимости задач и геометрического подхода к изучению их сложности. Изучение комбинаторно-геометрических свойств задач и геометрической интерпретации алгоритмов. Исследование свойств конусного разбиения пространства.

    диссертация, добавлен 28.12.2013

  • Анализ вычислительной сложности задачи трехмерной упаковки в общей постановке, а также основные подходы к ее решению. Содержание задачи математического программирования по размещению ориентированных произвольных невыпуклых многогранников сложных форм.

    статья, добавлен 30.05.2017

  • Изучение вопроса о разработке задач по теме "Многогранники" в отечественной школе. Анализ наиболее известных учебников по геометрии под редакциями Л.С. Атанасяна и А.В. Погорелова. Исследование практики сдачи Единого Государственного Экзамена в России.

    статья, добавлен 13.11.2014

  • Сущность центрального и параллельного проецирования, метод ортогональных проекций. Способы задания плоскости на чертеже. Параллельность и перпендикулярность прямых и плоскостей. Аксонометрические оси в прямоугольной изометрии. Свойства многогранников.

    учебное пособие, добавлен 25.11.2013

  • Понятие об операции проецирования. Задание плоскости на комплексном чертеже. Взаимное положение прямых и плоскостей. Изображение многогранников. Способы преобразования комплексного чертежа. Кривые линии и поверхности. Аксонометрические проекции.

    курс лекций, добавлен 15.09.2017

  • Основы классической теории сводимости задач и геометрического подхода к изучению их сложности. Понятие конусного и многогранного разбиения, афинной сводимости задач комбинаторной оптимизации. Примеры труднорешаемых и полиномиально разрешимых задач.

    диссертация, добавлен 10.01.2012

  • Понятие многогранников в геометрии. Основное определение понятия пирамиды. Определение вершины, ребер, боковых граней пирамиды, ее основания и правила их нахождения. Основные свойства правильной пирамиды, апофемы, усеченной пирамиды и тетраэдра.

    презентация, добавлен 26.04.2011

  • Теорема гомотопической инвариантности для некоторых когомологий полилогарифмических комплексов. Использование результатов для построения интересных классов гиперболических многогранников по данным алгебраической геометрии. Мотивные когомологии поля.

    дипломная работа, добавлен 28.12.2016

  • Переход от практической к философской геометрии, получение новых геометрических свойств. Определение и элементы многогранников (грань, вершина, ребро). Примеры и вид выпуклых и невыпуклых многограннииков. Многогранники в природе, архитектуре и искусстве.

    презентация, добавлен 02.04.2012

  • Развитие понятия о числе. Корни, степени и логарифмы. Координаты и векторы. Основы тригонометрии. Степенные, показательные, логарифмические и тригонометрические функции. Свойства многогранников. Начала математического анализа. Применение интеграла.

    учебное пособие, добавлен 29.11.2014

  • Характеристика выпуклых многогранников, все грани которых представляют собой одинаковые правильные многоугольники и в каждой вершине сходится одинаковое количество граней. Исследование свойств тетраэдра, гексаэдра, куба, икосаэдра, октаэдра и додекаэдра.

    реферат, добавлен 30.08.2011

  • Расширение основных геометрических понятий о симметрии на примере кристаллов. Исследование простых и сложных геометрических фигур и их составляющих. Изучение общих признаков многогранников, использование геометрических формул. Форма кристаллов.

    реферат, добавлен 04.02.2015

  • Ознакомление с формулами Каца–Вейля и функциями Холла–Литтлвуда. Рассмотрение многогранников Гельфанда–Цетлина. Формульное выражение многочленов. Моделирование аффинных функций. Доказательство соответствия между гранями и подграфами многоугольников.

    диссертация, добавлен 28.12.2016

  • Построение стереографической проекции всех элементов симметрии точечной группы в стандартной установке с использованием сетки Вульфа. План пространственной группы симметрии. Определение видов многогранников. Расчет кратности системы точек проекции.

    контрольная работа, добавлен 06.03.2012

  • Характеристика основных комбинаций многогранников с цилиндром, конусом и шаром. Главные правила при решении задач на комбинации фигур. Особенности факторов связанных с вписанными и описанными сферами. Формулы для расчета площади поверхности и объема.

    реферат, добавлен 21.05.2013

  • Треугольная пирамида как простейший из многогранников. Каркасный, соразмерный и инцентрический тетраэдр. Наклонный и прямой параллелепипед. Построение плоских сечений. Метод следов. Решение задач на построение сечений тетраэдра и параллелепипеда.

    презентация, добавлен 18.04.2017

  • Общая характеристика математическое обоснование свойств, структура и компоненты тел вращения: цилиндр, конус и шар. Объемы многогранников, тел с известными площадями поперечных, сечений. Определение и расчет параметров площади поверхности тел вращения.

    реферат, добавлен 04.04.2016

  • Рассмотрение многомерных фигур, от одномерного отрезка до шестимерного хексеракта. Анализ топологических характеристик многомерных фигур и закономерностей. Формула нахождения количества ребер фигуры, ее сравнение с теоремой Эйлера для многогранников.

    статья, добавлен 03.08.2021

  • Способы определения объема многогранниками, правильной шестиугольной призмы. Вычисление площади правильного шестиугольника способом разбивки на шесть треугольников. Разность объема треугольной призмы и двух пирамид. Объем прямоугольного параллелепипеда.

    презентация, добавлен 06.04.2015

  • Пересечение двух многогранников и общий алгоритм построения лини пересечения поверхностей. Пересечение гранной и кривой поверхности. Описание методов вспомогательных секущих плоскостей и сфер. Особенности пересечения поверхностей вращения, теорема Монжа.

    контрольная работа, добавлен 15.04.2016

  • Рассмотрение правил построения линии сечения поверхности плоскостью. Раскрытие понятия развертки поверхности. Приведение общего принципа построения точек пересечения прямой с поверхностью. Построение развертки пирамидальных и призматических поверхностей.

    лекция, добавлен 24.07.2014

  • Геометрическое построение "золотого сечения". Построение Евклидом правильных 5- и 10-угольников. Интерес к "золотому сечению" среди ученых и художников в связи с его применениями в геометрии, искусстве и архитектуре. Ряд Фибоначчи. Красота по формуле.

    реферат, добавлен 25.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.