Застосування подвійного і потрійного інтегралів

Поняття подвійного інтегралу, достатні умови його існування та головні властивості. Основні правила обчислення та побудова графіків. Особливості заміни змінних у подвійному та потрійному інтегралів. Основні правила їх застосування до задач механіки.

Подобные документы

  • Обчислення площ фігур, об'єму тіла і площ поверхонь з допомогою подвійного інтегралу. Обчислення та механічний зміст криволінійних інтегралів першого і другого роду. Визначення центру ваги площі. Розрахунок роботи при переміщенні одиниці маси по контуру.

    курсовая работа, добавлен 06.05.2014

  • Функції багатьох змінних: поняття, область визначення, неперервність. Інтегральне числення функції кількох змінних. Практичне обчислення подвійного та потрійного інтегралів в декартовій та полярній системах координат та визначення його властивостей.

    курс лекций, добавлен 13.09.2009

  • Задачі визначення інтеграла. Означення та умови існування визначеного інтеграла. Властивості визначеного інтеграла. Інтеграл із змінною верхньою межею. Формула Ньютона-Лейбніца. Методи обчислення визначених інтегралів та їх основне застосування.

    лекция, добавлен 08.08.2014

  • Формули наближеного обчислення прямокутників та трапецій. Розробка програми для автоматичного обчислення інтегралів на мові програмування QBASIC. Методи наближених обчислень визначених інтегралів. Виведення формул додаткових членів та формул Сімпсона.

    курсовая работа, добавлен 21.05.2012

  • Застосування квадратурних формул з вагою до інтеграла з нескінченними межами і розривною функцією. Метод Канторовича для виділення особливостей. Наближене обчислення кратних інтегралів. Метод статистичних випробувань Монте-Карло, Люстерника і Діткіна.

    курсовая работа, добавлен 22.01.2013

  • Розгляд методів наближеного обчислення визначених інтегралів, що не беруться через елементарні функції: формули прямокутника і трапеції, параболічне інтерполювання, формула Сімпсона. Програма на мові QBasic для автоматичного обрахування інтегралів.

    реферат, добавлен 11.10.2009

  • Характеристика кратних інтегралів: визначення подвійних і потрійних інтегралів; викладення послідовності обчислення подвійних і потрійних інтегралів, об’єму циліндричного тіла та площі; приклади розв’язання рівнянь з використанням кратних інтегралів.

    лекция, добавлен 30.04.2014

  • Застосування та обчислення криволінійних інтегралів першого роду. Умова незалежності криволінійного інтегралу від шляху інтегрування. Визначення довжини дуги кривої, маси кривої та координат центру мас. Особливості роботи силового векторного поля.

    курсовая работа, добавлен 12.05.2016

  • Характеристика визначеного інтеграла: означення та властивості; умови інтегрованості функції; формула Ньютона – Лейбніца; методи обчислення площ плоских фігур, довжини дуги плоскої кривої, об’єму і площі поверхні тіл обертання. Огляд невласних інтегралів.

    лекция, добавлен 30.04.2014

  • Означення інтегралу Стілтьєса, його властивості, приклади обчислення. Його зведення до інтегралу Рімана, заснованого на визначенні "верхніх" та "нижніх" сум Дарбу. Загальні умови та класи існування інтегрованих функцій. Інтегрування за частинами.

    курсовая работа, добавлен 15.06.2013

  • Визначення та основні поняття визначеного інтеграла. Геометричний та економічний зміст визначеного інтеграла, його властивості. Суми Дарбу, їх властивості та геометрична інтерпретація. Властивості визначених інтегралів, які виражаються нерівностями.

    лекция, добавлен 08.12.2013

  • Ознайомлення з формулами прямокутників і трапецій. Визначення сутності параболічного інтерполювання. Дослідження формули Сімпсона, яка використується для наближеного обчислення інтегралів. Характеристика особливостей інтерполяційної формули Лагранжа.

    курсовая работа, добавлен 13.02.2016

  • Проблеми наближеного обчислення визначених інтегралів. Виведення формул наближеного обчислення прямокутників, трапецій та формули Сімпсона. Параболічне інтерполювання, дроблення проміжку. Залишковий член формул прямокутників, трапецій, Сімпсона.

    курсовая работа, добавлен 10.11.2012

  • Задачи диференціального числення. Поняття про інтегральне числення. Невизначений інтеграл, його властивості. Таблиця основних інтегралів. Основні методи інтегрування. Метод безпосереднього інтегрування, підстановки, заміни змінної, інтегрування частинами.

    лекция, добавлен 08.08.2014

  • Проблеми методів наближеного обчислення визначених інтегралів, що не беруться через елементарні функції і способи їх вирішення. Виведення формули наближеного обчислення, залишкового члену формули прямокутників, формули трапецій і рівняння Сімпсона.

    курсовая работа, добавлен 24.12.2012

  • Поняття про ряди, їх різновиди та відмінні особливості. Основні поняття та означення числових рядів. Знакододатні ряди та достатні ознаки збіжності, абсолютні та умовні. Теорема Абеля та її практичне використання. Головні властивості степеневих рядів.

    лекция, добавлен 08.08.2014

  • Поняття "наближене рівняння" та "степеневі ряди". Наближене обчислення значень функцій за допомогою рядів. Використання рядів для розв’язання рівнянь. Обчислення визначених інтегралів та інтегрування диференціальних рівнянь за допомогою рядів Фур’є.

    курсовая работа, добавлен 23.09.2015

  • Специфіка знаходження точних оцінок середніх інтегральних коливань істотно обмежених функцій та характеристика одержання точних оцінок локальної гладкості сингулярних інтегралів. Особливості вивчення різницевих властивостей деяких максимальних функцій.

    автореферат, добавлен 28.07.2014

  • Ряди Тейлора і Маклорейна. Приклади розкладу функцій в ряди. Біномінальні, степеневі, числові ряди. Обчислення означених інтегралів за допомогою рядів. Інтегрування диференціальних рівнянь та обчислення елементарних функцій за допомогою рядів.

    отчет по практике, добавлен 02.03.2010

  • Поняття, основні властивості визначників та їх обчислення. Сутність алгебраїчного доповнення Мінора. Поняття матриці, визначення її другого порядку, та властивості оберненої матриці. Математичний аналіз та функції системи лінійних алгебраїчних рівнянь.

    курсовая работа, добавлен 03.11.2012

  • Основні методи скінченних елементів для розв'язування різноманітних задач математичної фізики і техніки. Класична теорія оболонок Кірхгофа-Лява. Побудова конформних скінченно-елементних схем. Сплайни високих степенів. Функціонали допоміжних інтегралів.

    автореферат, добавлен 25.06.2014

  • Визначення та властивості ліній кривини. Їх геометричні властивості. Асимптотичні лінії і повна кривина поверхні. Основні умови збігу сітки координатних ліній на поверхні з сіткою ліній кривини. Задачі на знаходження асимптотичних ліній поверхні.

    курсовая работа, добавлен 20.09.2009

  • Економічна інтерпретація прямої та двоїстої задач лінійного програмування. Основні правила побудови двоїстих задач. Основні теореми двоїстості та їх економічний зміст. Приклади застосування для знаходження оптимальних планів прямої та двоїстої задач.

    лекция, добавлен 14.02.2015

  • Монотонність, локальний екстремум функції. Найбільше і найменше значення функції. Окупність, вгнутість кривих. Точки перегину. Асимптоти кривої графіка функції. Загальна схема дослідження функції та побудова графіків. Достатні умови строгої монотонності.

    лекция, добавлен 08.08.2014

  • Розбиття множини інтегралів типу Коші вздовж замкненої жорданової спрямлюваної кривої Г на підмножини. Швидкість збіжності рядів Тейлора для функцій із заданих класів, її дослідження та головні фактори впливу. Точні порядкові оцінки наближень функцій.

    автореферат, добавлен 18.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.