Численные методы линейной алгебры. Решение нелинейных уравнений и систем уравнений
Понятие сингулярных чисел, проблема нахождения их собственных значений. Вычисление сингулярного разложения матрицы с использованием метода вращений Якоби. Разработка и тестирование на примерах программы для вычисления сингулярного разложения матриц.
Подобные документы
Роль метода Якоби при решении научных и промышленных проблем: реализация алгоритмов вычислительной математики и физики, обрабатывание результатов экспериментальных исследований. Использование в данном процессе программы на языке программирования C++.
статья, добавлен 20.07.2018Рассчет по правилу умножения матриц коэффициентов новой матрицы. Решение системы линейных алгебраических уравнений тремя методами. Дифференциальное и интегральное исчисление функции одной переменной. Нахождение площади фигуры, ограниченной линиями.
контрольная работа, добавлен 02.10.2012Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.
лекция, добавлен 12.03.2013Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.
научная работа, добавлен 22.07.2014Основные понятия приближённых вычислений. Учёт погрешности в арифметических действиях. Применение модифицированного метода Ньютона для вычисления систем нелинейных уравнений. Сущность методики Эйлера-Коши с последовательной итерационной обработкой.
учебное пособие, добавлен 14.01.2017Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.
реферат, добавлен 06.03.2023Вычисление всех корней нелинейных уравнений, содержащихся на заданном отрезке локализации. Аналитическое и численное решение задач методами бисекции, Ньютона и простых итераций (последовательных повторений). Критерий окончания итерационного процесса.
лабораторная работа, добавлен 12.12.2011- 59. Матрица
Элементы и обозначение матриц. Свойства операции произведения матриц. Получение присоединенной матрицы путем замены каждого элемента матрицы на его алгебраическое дополнение. Использование метода обратной матрицы для решения систем линейных уравнений.
презентация, добавлен 14.11.2014 Сингулярные интегральные уравнения: решение уравнений ограниченных на обоих концах методом подобластей. Характеристика программы Matchematica. Реализация метода подобластей в программе: метод Гаусса, решение системы линейных алгебраических уравнений.
курсовая работа, добавлен 12.05.2014Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.
реферат, добавлен 07.04.2011Составление частотной карты технологического процесса. Применение методики нахождения кратномасштабного разложения Хаара. Введение в вейвлеты в свете линейной алгебры. Анализ временных рядов. Прогноз и управление. Применение матриц Адамара в разложении.
статья, добавлен 31.08.2018Нахождение обратной матрицы с помощью правила умножения матриц. Решение системы линейных уравнений с тремя неизвестными методом Крамера. Вычисление координаты точки пересечения медиан, длины высоты, опущенной из вершины, площади заданного треугольника.
контрольная работа, добавлен 09.02.2015Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
контрольная работа, добавлен 22.08.2014Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.
курс лекций, добавлен 26.09.2017Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
учебное пособие, добавлен 13.04.2019Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.
контрольная работа, добавлен 09.07.2015Методы решения нелинейных и дифференциальных уравнений и интерполяции функций. Численные методы решения некоторых математических и инженерных задач, программное обеспечение, их реализующее. Использование среды математического моделирования Matlab.
курсовая работа, добавлен 09.02.2019Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011Сущность и основные методы решения системы линейных алгебраических уравнений. Понятие линейной зависимости, ее представление. Характеристика метода исключения Гаусса и полного исключения Жордана. Основные правила определения элементов обратной матрицы.
лекция, добавлен 29.10.2013Равенство матриц, действия над ними. Умножение матрицы на матрицу-столбец. Определения определителей второго и третьего порядков. Понятие обратной матрицы. Решение систем линейных уравнений с неизвестными матричным методом и по формулам Крамера.
контрольная работа, добавлен 26.09.2017Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.
курсовая работа, добавлен 26.02.2014Основные правила и формулы решения нелинейных уравнений. Процесс отделения корней, характеристика основных проблем. Особенности применения графического и аналитического методов. Конечные методы уточнения корней нелинейного уравнения. Метод дихотомии.
лекция, добавлен 29.10.2013Схема Гаусса с выбором главного элемента. Метод единственного деления. Метод квадратного корня. Метод Халецкого. Итерационные методы. Методы получения характеристического многочлена. Частичная проблема собственных значений. Метод вращения с преградами.
методичка, добавлен 15.09.2012