Решение дифференциальных уравнений с использованием интегральных вычислений
Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.
Подобные документы
Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.
контрольная работа, добавлен 18.12.2012Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Задачи Коши, нахождение решения дифференциального уравнения. Способы получения формулы Эйлера и способы повышения ее точности. Структурная схема системы управления. Построение решения дифференциального уравнения с использованием неявного метода Эйлера.
реферат, добавлен 16.06.2009Вычисление интегралов в пределах и функциях, нахождение точки пересечения парабол. Разложение подинтегральных выражений на простые дроби и интегрирование по частям, нахождение точки пресечения линий, решения и расчёты функций интегрируемых значений.
контрольная работа, добавлен 23.04.2012Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Определение и характеристика производной функции в направлении вектора. Ознакомление с результатами исследования функции на экстремум. Расчет и анализ дискриминанта уравнения и интеграла. Вычисление площади фигуры, ограниченной прямой и параболой.
контрольная работа, добавлен 28.01.2017Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.
учебное пособие, добавлен 05.05.2015Особенности криволинейной трапецией. Характеристика фигуры, ограниченной прямыми. Рассмотрение формулы для вычисления площади криволинейной трапеции. Нахождение точки пересечения кривых. Методология вычисления площади фигуры, ограниченной линиями.
задача, добавлен 17.02.2016Определение площади плоской фигуры, объема тел вращения, образованных при вращении вокруг оси, с помощью определенного интеграла. Понятие несобственного интеграла с бесконечными пределами интегрирования, несобственные интегралы от разрывных функций.
лекция, добавлен 09.04.2018Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.
лабораторная работа, добавлен 08.06.2015Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.
курсовая работа, добавлен 23.10.2017Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Пределы интегрирования в двойном интеграле по данной области. Вычисление двойного интеграла в прямоугольной и полярной системах координат. Вычисление криволинейного интеграла по формуле Грина. Исследование заданных рядов про признакам Даламбера и Коши.
методичка, добавлен 10.11.2014Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.
курсовая работа, добавлен 16.05.2019Полное исследование функции и построение ее графика с использованием дифференциального исчисления. Расчет неопределенных интегралов с использованием методов интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных.
контрольная работа, добавлен 16.01.2015Основные этапы и закономерности решения дифференциальных уравнений. Порядок построения гармонического ряда и его анализ. Почленное интегрирование заданных значений по признаку сходимости Коши. Отличительные черты собственного и несобственного интеграла.
контрольная работа, добавлен 29.03.2018Определение длины ребер и угла меду ними при заданных координатах вершины пирамиды. Вычисление пределов, без использования правила Лопиталя. Вычисление производных заданных функций, а также порядок построения графика. Расчет неопределенных интегралов.
контрольная работа, добавлен 15.05.2014Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.
учебное пособие, добавлен 02.05.2014Определение несобственного интеграла с бесконечными пределами. Оценка признаков сравнения функций. Мера ограниченной замкнутой области. Интегралы от неограниченных функций. Интегрирование неравенств фигуры и точки. Изучение свойств двойного интеграла.
лекция, добавлен 17.01.2014Признак Вейерштрасса о равномерной сходимости функционального ряда. Изучение метода нахождения интервала сходимости степенного ряда. Приближенное вычисление с помощью рядов Тейлора и Маклорена. Тригонометрический ряд Фурье от четных и нечетных функций.
курс лекций, добавлен 30.07.2017Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.
лекция, добавлен 06.04.2014Применение правила Лопиталя к неопределенностям. Составление уравнения касательных к гиперболе. Исследование функции, нахождение экстремумов и построение ее графиков. Вычисление интеграла заменой переменных и с использованием формулы Ньютона-Лейбница.
контрольная работа, добавлен 17.02.2011Варианты параллельной системы вычислений при решении систем дифференциальных уравнений первого порядка с нечеткими условиями. Анализ метода, предложенного Обергуггенбергером и Пицманом в статье "Дифференциальные уравнения с нечеткими параметрами".
статья, добавлен 27.02.2019Понятие о комплексном решении однородного линейного дифференциального уравнения. Решение задачи для линейного неоднородного дифференциального уравнения с постоянными коэффициентами с правой частью имеющей вид полинома и в случае различных корней.
контрольная работа, добавлен 04.12.2014