Определитель произведения прямоугольных матриц

Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.

Подобные документы

  • Периодизация этапов становления науки изучающей величины, количественные отношения и пространственные формы. История зарождения неевклидовой геометрии. Действия с комплексными числами. Фундаментальные представления об алгебре матриц и интегралов.

    курс лекций, добавлен 26.01.2014

  • Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.

    презентация, добавлен 31.10.2013

  • Вычисление нижних и верхних границ и составление платежных матриц. Определение стратегий игры и седловых точек согласно заданным матрицам. Ознакомление с решением матричных игр графоаналитическим методом с помощью применения электронных таблиц excel.

    контрольная работа, добавлен 28.05.2014

  • Изложение исследований по теории точных матриц и основ тензорной тригонометрии, основанной на квадратичных метриках в многомерных арифметических пространствах. Представление тензорных тригонометрических ротаций и деформаций в элементарных формах.

    монография, добавлен 28.12.2013

  • Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.

    учебное пособие, добавлен 15.04.2014

  • Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.

    контрольная работа, добавлен 06.11.2012

  • Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.

    шпаргалка, добавлен 25.03.2011

  • Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.

    реферат, добавлен 30.05.2022

  • Виды блочных матриц и операции над ними, их отличие от обычных. Сложение, умножение, кронекеровские произведение и сумма. Применение формулы Фробениуса. Алгоритм нахождения полуобратной матрицы. Нахождение обратной к матрице и информация о "возмущении".

    курсовая работа, добавлен 18.05.2013

  • Изучение основных операций с символьными величинами в среде Matlab, понятия переменных и функций. Характеристика способов представления матриц и векторов и работа с ними, графическое представление функций в среде Matlab и систематизация изученных данных.

    курсовая работа, добавлен 20.03.2014

  • Матричная запись системы данных. Методы простых и покоординатных итераций. Типы их сходимости. Оценки итерационного процесса. Алгоритм Ньютона и его модификация: двухшаговый, разностный (дискретный) и с последовательной аппроксимацией обратных матриц.

    презентация, добавлен 30.10.2013

  • Построение множества решений систем линейных неравенств. Поиск координат их угловых точек. Получение графической модели решения стандартной математической задачи. Проверка оптимальности опорного плана. Анализ этапов составление платежных матриц.

    задача, добавлен 12.01.2013

  • Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.

    практическая работа, добавлен 12.12.2019

  • Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

    курс лекций, добавлен 23.04.2016

  • Решение игры в чистых стратегиях. Построение платежных матриц. Понятие и поиск седловой точки. Определение гарантированного и вероятностного выигрыша. Применение метода Гаусса при решении системы неравенств. Минимизация математического ожидания игрока.

    контрольная работа, добавлен 17.12.2016

  • Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.

    курс лекций, добавлен 05.01.2016

  • Особенности определения суммы матриц. Вычисление определителя третьего порядка. Решение системы линейных уравнений методом Гаусса. Оценка косинуса угла между векторами и плоскостями при известных заданных координатах. Расчет объема тетраэдра и его высоты.

    контрольная работа, добавлен 14.11.2013

  • Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.

    контрольная работа, добавлен 02.12.2013

  • Система линейных неравенств, определяющих треугольник. Элементарные преобразования матриц. Линейно независимая система из четырех четырехмерных векторов. Исследование нечетной функции. Промежутки возрастания и убывания функции, ее монотонность.

    контрольная работа, добавлен 06.11.2012

  • Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.

    презентация, добавлен 11.12.2013

  • Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.

    курсовая работа, добавлен 23.04.2011

  • Известные формулы теории матриц для обыкновенных дифференциальных уравнений. Вычисление оболочек составных и со шпангоутами простейшим методом "сопряжения участков интервала интегрирования". Свойства переноса краевых условий в методе С.К. Годунова.

    монография, добавлен 10.08.2017

  • Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.

    реферат, добавлен 16.01.2018

  • Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.

    реферат, добавлен 02.06.2021

  • Определители матриц. Векторное произведение векторов, его свойства. Линейные преобразования пространства. Прямая в пространстве. Виды уравнений прямой. Гипербола и парабола. Конусы и цилиндры. Непрерывные функции и их свойства. Производная и дифференциал.

    шпаргалка, добавлен 11.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.