Возникновение математики и ее функции
Характеристика математики как науки о количественных отношениях и пространственных формах действительного мира, особенности ее назначения. Появление счетных функций: умножения, деления, сложения и вычитания чисел, первые геометрические понятия и цифры.
Подобные документы
Выделение из предложенного множества подмножества и нахождение числа элементов в дополнении этого подмножества. Понятие разности целых неотрицательных чисел. Связь между действиями вычитания и сложения. Принцип нахождения неизвестного слагаемого.
контрольная работа, добавлен 26.04.2015Состояние науки в разные исторические периоды. Первые дошедшие до нас математические тексты 2000—1700 гг. до н.э. Построение первых математических теорий, математика европейского средневековья. Период математики переменных величин (XVII—XVIII вв.).
реферат, добавлен 09.04.2016Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.
реферат, добавлен 17.03.2015Первая математическая деятельность: счет и наскальные рисунки. Развитие математики в Вавилоне и Египте. Греческая математика, получение заключений на основе дедуктивного рассуждения. Математики Индии, появление нуля. Математика эпохи Возрождения.
реферат, добавлен 22.06.2014Розгляд історії математики як інтеграційної основи навчання курсу алгебри майбутніх учителів математики. Використання методів геометричної алгебри при сумуванні чисел натурального ряду. Знаходження суми послідовних непарних чисел, починаючи з одиниці.
статья, добавлен 02.02.2018Изучение поведения функций и построение их графиков как важный раздел математики. Вклад в развитие графиков функций математиков древнего мира. Основные способы задания функций, методы построениях их графиков. Построение графика обратной функции.
реферат, добавлен 04.12.2014Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Ознакомление с историей математики Индии, древних Египта, Китая и Греции. Описание счётного устройства инков. Рассмотрение основ вавилонской математики. Развитие нумерации на Руси. Последствия Петровских реформ для науки. Умножение и деление на Руси.
реферат, добавлен 23.11.2014История развития комплексных чисел. Соглашение о комплексных числах. Сложение, деление и вычитание комплексных чисел, их геометрическое изображение. Модуль и аргумент комплексного числа. Геометрический смысл сложения и вычитания комплексных чисел.
доклад, добавлен 21.10.2011Возникновение и развитие математики как научной дисциплины. Основные понятия дифференциации функций: предел, производная, непрерывность. Исчисление определенного и неопределенного интегралов. Нахождение промежутков выпуклости и точек перегиба функции.
учебное пособие, добавлен 28.12.2013Изучение специфического мышления математика. Характеристика математики как искусства, сферы творческий деятельности. Анализ практического применения математики. Изучение аргументов Г.Г. Харди в защиту математики как профессиональной деятельности.
статья, добавлен 31.03.2019Язык математики и его основные элементы. Функции и операции над ними. Интегральное исчисление и его приложения. Множества, мера и их применения. Математические модели и гуманитарные науки. Проблемы и перспективы современной прикладной математики.
курс лекций, добавлен 14.08.2015Повышение культуры мышления, формирование научного мировоззрения как цель изучения математики. Современное понятие математики. Применение алгебраических структур. Математические модели объектов. Проникновение математики в различные отрасли знаний.
статья, добавлен 25.07.2018- 64. Дуальные числа
Алгебра дуальных чисел. Операции сложения и вычитания для дуальных чисел. Разность параметров делимого и делителя. Основное свойство мультипликативности. Закон отображения области определения в область значений. Классическое определение дифференциала.
разработка урока, добавлен 21.08.2017 Математика как часть человеческой культуры, ключ к познанию окружающего мира, база научно-технического прогресса. Этапы развития математики. Ее роль в науке, интеллектуальном развитии личности, познании мира. Особенности математического стиля мышления.
реферат, добавлен 29.09.2014История возникновения и развития математики в Древнем Египте, её использование при расчетах в строительных работах, сборе налогов, разделе имущества, измерении площадей полей. Философские проблемы математики, направления обоснования науки XX века.
реферат, добавлен 02.03.2015Этапы развития математических знаний: формирование понятия геометрической фигуры и числа, изобретение арифметических операций, появление дедуктивной математической системы. Древнейшие древнеегипетские математические тексты. Нумерация и разложение чисел.
реферат, добавлен 19.12.2010Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.
краткое изложение, добавлен 21.03.2018Роль математики в современной науке. Построенная Ньютоном модель механического движения как самый важный источник математического анализа, изучающего производную и ее свойства. Потребность развития математической науки и ее практических применений.
статья, добавлен 09.04.2019Понятие математики как науки. Понятие античности как отдельной эпохи. Рождение математики в Элладе. Афинское содружество ученых: школа Платона. Математическая вселенная Евклида. Наследники Евклида: Эратосфен и Архимед. Закат греческой математики.
дипломная работа, добавлен 20.05.2014Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.
шпаргалка, добавлен 01.05.2009Основные принципы построения и преподавания науки. Математические модели, отражающие объективные свойства и связи. Формирование понятия геометрической фигуры и числа как идеализации реальных объектов. Роль математики в интеллектуальном развитии личности.
реферат, добавлен 07.06.2015Происхождение математики, построение, анализ количественных математических моделей, исследование структур. Чтение кардиограммы, возможности компьютерной томографии. Предсказание поведения объекта в зависимости от времени, динамические, статические модели.
презентация, добавлен 03.02.2016Прикладная математика как объединение всех математических методов и дисциплин, находящих практическое применение за пределами чистой математики. Применение математики в других областях науки и техники (в физике, химии, астрономии, экономике, инженерии).
статья, добавлен 30.03.2019Основные направления развития математики в XX веке: топология, риманова геометрия, теория вероятности. Новые области применения математики в связи с развитием компьютерных технологий. Использование сведений о развитии математики в начальной школе.
курсовая работа, добавлен 20.09.2018