Численные методы решения обыкновенных дифференциальных уравнений
Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.
Подобные документы
Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.
лабораторная работа, добавлен 10.10.2015Численные методы решения нелинейных уравнений. Отделение корней уравнения. Численные методы интегрирования. Формулы прямоугольников, трапеций. Формула Симпсона. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера и Рунге-Кутты.
методичка, добавлен 25.03.2015Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.
курсовая работа, добавлен 26.12.2012Задачи Коши, нахождение решения дифференциального уравнения. Способы получения формулы Эйлера и способы повышения ее точности. Структурная схема системы управления. Построение решения дифференциального уравнения с использованием неявного метода Эйлера.
реферат, добавлен 16.06.2009Основные численные методы решения краевой задачи: метод стрельбы, конечно-разностный метод. Примеры задач и их реализация в среде MathCad. Сравнение результатов вычислений. Пример решения нелинейного ОДУ (обыкновенного дифференциального уравнения).
курсовая работа, добавлен 05.06.2015Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
курсовая работа, добавлен 16.04.2015Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.
статья, добавлен 26.10.2010Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Метод Рунге-Кутты для решения как одиночных дифференциальных уравнений первого порядка, так и систем уравнений первого порядка. Исследование метода Рунге-Кутты четвертого порядка для решения дифференциальных уравнений. Программа для решения уравнения.
контрольная работа, добавлен 29.03.2012Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Задача Коши и дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Интегрирование линейного однородного уравнения. Теорема существования и единственности решения дифференциального уравнения. Частные случаи уравнений II порядка.
контрольная работа, добавлен 31.03.2015Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Вычисление приближенных решений обыкновенного дифференциального уравнения 1 порядка. Вектор решения по методам Эйлера и Рунге-Кутты. Расчет погрешности приближенных решений. Построение графиков, демонстрирующих методы решений ОДУ второго порядка.
контрольная работа, добавлен 05.12.2013Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Методы Адамса-Бэшфорта и Адамса-Мултона. Форма записи метода Адамса при изменении шага интегрирования. Методы Адамса для уравнений более высокого порядка. Преимущества метода Адамса по сравнению с методом Рунге-Кутта, изменение шага в процессе решения.
методичка, добавлен 07.12.2013Ознакомление с процессом приближенного решения с помощью степенных рядов. Рассмотрение численного решения методом Эйлера и Рунге-Кутты. Исследование порядка вычисления абсолютной и относительной погрешности. Изучение совместного графического решения.
контрольная работа, добавлен 15.01.2018Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
контрольная работа, добавлен 07.06.2013- 19. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012 Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
контрольная работа, добавлен 02.05.2013Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.
лекция, добавлен 06.04.2018Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.
лекция, добавлен 22.07.2015Применение аналитических математических методов при моделировании процессов в науке и технике. Решение практических задач по баллистике методами Эйлера, Рунге-Кутта и Адамса. Учёт локальных особенностей искомой функции дифференциального уравнения.
лекция, добавлен 21.09.2017Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016- 25. Численные методы
Практическое решение задачи Коши в MathCAD. Исправленный метод Эйлера. Метод Рунге-Кутта. Задача Коши для обыкновенного ДУ второго порядка. Задача выбра параметров, представляющих собой погрешность приближенного равенства. Нахождение значения функций.
курсовая работа, добавлен 11.07.2010