Линейная алгебра и элементы аналитической геометрии
Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.
Подобные документы
Определение квадратной матрицы, на главной диагонали которой стоят единицы. Построение матрицы В, элементы которой получены путем умножения каждого элемента матрицы А на это число. Определение бесконечно большой величины. Правила дифференцирования.
контрольная работа, добавлен 08.10.2014Скалярное произведение векторов. Смешанное и векторное произведения векторов. Прямая на плоскости. Кривые второго порядка на плоскости. Плоскость и прямая в пространстве. Понятие о поверхностях второго порядка в трехмерном пространстве. Сфера и эллипсоид.
учебное пособие, добавлен 23.03.2013Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.
реферат, добавлен 16.01.2018- 79. Алгебра матриц
Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.
методичка, добавлен 19.09.2015 Основные понятия матрицы и ее определителей. Использование теорем замещения и аннулирования в доказательстве свойств определителей. Алгебраическое дополнение и минор элемента. Операции вычисления между элементами строк и столбцов квадратной матрицы.
лекция, добавлен 29.09.2013Вычисление суммы и разности заданных квадратных матриц, произведения матрицы и числа. Расчет детерминантов второго, третьего и четвертого порядка и поверка вычислений. Определение переменной в системе линейных уравнений с помощью матричного метода.
задача, добавлен 31.07.2011Вектор как одно из фундаментальных понятий современной математики, тензор - его обобщение. Векторы и их применение в жизни человека. Использование скалярного произведения в элементарных и абстрактных областях математики, физики и прикладных наук.
статья, добавлен 27.02.2019- 83. Блочные матрицы
Виды блочных матриц и операции над ними, их отличие от обычных. Сложение, умножение, кронекеровские произведение и сумма. Применение формулы Фробениуса. Алгоритм нахождения полуобратной матрицы. Нахождение обратной к матрице и информация о "возмущении".
курсовая работа, добавлен 18.05.2013 Действия с линейными операторами. Произведение оператора на число. Результат последовательного применения на вектор-прообраз х в пространстве Х. Изучение характеристического многочлена матрицы. Собственные векторы и числа, системы линейных уравнений.
лекция, добавлен 26.11.2013Решение систем линейных уравнений методом Гаусса, Крамера и обратной матрицы. Геометрия на плоскости и в пространстве, каноническое уравнение прямой. Раскрытие неопределенностей и вычисление пределов. Производные и дифференцирования сложной функции.
контрольная работа, добавлен 22.01.2013Проекционные изображения, используемые в технической документации. Основные свойства трехпроекционного комплексного чертежа. Прямая общего и частного положения, ее обозначения на чертеже, виды. Фронтально-проецирующая прямая, ее построение и свойства.
реферат, добавлен 20.06.2013Умножение элементов строки (столбца) матрицы. Понятие системы линейных уравнений и ее решения. Коэффициенты системы и свободные члены. Теорема Кронекера-Капелли. Линейная комбинация базисных столбцов матрицы. Условия существования решения системы.
лекция, добавлен 15.09.2017- 88. Алгебра матриц
Базовые действия над матрицами: сложение, вычитание, умножение на число, умножение матрицы на матрицу, также операция деления на матрицу. Теорема невырожденной квадратной матрицы. Понятие обратной матрицы и решение уравнения. Базисный минор и ранг.
реферат, добавлен 07.04.2015 Определение связи между вектором входа и векторами состояния и выхода. Примеры получения и преобразования моделей. Определение характеристического уравнения объекта. Расчет эквивалентной матрицы передаточных функций, которая связывает векторы состояния.
лекция, добавлен 22.07.2015- 90. Линейная алгебра
Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.
учебное пособие, добавлен 13.02.2016 Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.
учебное пособие, добавлен 13.01.2014Особенности алгебры над множеством логических функций и переменных, сигнатура которой содержит две бинарные операции. Характеристика полиномома Жегалкина. Основные аспекты его поиска. Анализ основ использования метода неопределенных коэффициентов.
реферат, добавлен 06.04.2015Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Рассмотрение инструментов, применяемых для решения задач линейной алгебры с помощью MathCad. Определение значения матричного выражения. Определение матричного выражения в буквенном виде и запись его значения. Умножение матрицы на единичную матрицу.
практическая работа, добавлен 31.10.2019Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.
презентация, добавлен 13.04.2012- 96. Линейная алгебра
Изучение формул вычисления определителей второго и третьего порядков. Применение методов Крамера и Гаусса для решения систем линейных уравнений. Аналитическая геометрия на плоскости и в пространстве. Представление комплексных чисел и операции над ними.
тест, добавлен 06.09.2017 Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
презентация, добавлен 01.09.2015Понятие, свойства и характеристика основных видов матриц, а именно матрица размера mхn, квадратная, единичная, симметрическая и диагональная. Описание операций по составлению суммы и разности матриц, оценка их результатов. Сущность преобразования подобия.
контрольная работа, добавлен 16.06.2010Описание методов проекций (центральные и параллельные проекции). Проецирование методом Монжа. Взаимное положение прямых в пространстве: пересекающиеся, параллельные и скрещенные прямые. Способы задания плоскости на чертеже. Прямая и точка в плоскости.
курсовая работа, добавлен 15.12.2010Ознакомление с действиями над матрицами. Рассмотрение и характеристика свойств определителей (детерминант). Изучение сущности алгебраического дополнения минора матрицы. Анализ условий применения матричного метода решения систем линейных уравнений.
контрольная работа, добавлен 12.10.2016