Методы решения уравнений в странах древнего мира
Изучение истории развития науки математики. Характеристика применения Ахмесом метода одного и двух ложных положений (фальшивое правило). Анализ способов составления и решения квадратных уравнений в древнем Вавилоне. Решение уравнений в целых числах.
Подобные документы
Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.
презентация, добавлен 14.01.2018Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Алгоритм численного метода решения систем обыкновенных дифференциальных уравнений (задачи Коши). Применение метода Эйлера в алгоритме. Перечень основных положений предложенного метода решения систем ОДУ. Программа реализации алгоритма на языке Си.
статья, добавлен 23.10.2010Метод "частичных" областей для решения уравнений с параметрами. Показательные и логарифмические уравнения и неравенства с параметрами. Освоение методов решения вычислительных и логических задач. Поиск решения линейных и квадратных уравнений в общем виде.
дипломная работа, добавлен 20.05.2018Понятие алгебраического уравнения четвертой степени, история его решения. Пример решения биквадратного и возвратного уравнений четвертой степени. Решение Декарта—Эйлера. Анализ схемы метода Феррари, разложения на множители и кубическая резольвента.
доклад, добавлен 04.10.2013Изучение особенностей интегральных уравнений, которые в совокупности с численными методами их решения являются средством исследования и математического моделирования задач математической физики. Изучение метода моментов, итераций, Ритца, Келлога.
курсовая работа, добавлен 21.04.2015Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.
реферат, добавлен 16.03.2012Рассмотрение вариантов решения однородных уравнений со степенью n>2. Описание алгоритма решения с наложением ограничения на величину коэффициента при втором члене выделяемого многочлена. Анализ возможности нахождения дробных значений корней уравнений.
лекция, добавлен 01.02.2017Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.
курсовая работа, добавлен 07.11.2020Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Определение абсолютной и относительной ошибки при помощи метода дифференциалов. Расчет линейной аппроксимации, применение метода интегралов для вычисления площади, работы силы. Практика решения характеристических уравнений. Общее решение ЛОДУ, ЛНДУ.
контрольная работа, добавлен 11.04.2009Прямой ход метода Гаусса - процесс приведения системы к треугольному виду. Методы решения систем линейных уравнений. Анализ преобразований: перемена местами двух любых уравнений; умножение обеих частей уравнения на произвольное число, отличное от нуля.
контрольная работа, добавлен 18.12.2009Классические итерационные метода. Релаксация как методика уточнения решения. Прямые методы решения системы линейных алгебраических уравнений. Особенности итерационного метода Якоби, примеры его применения. Метод простых итераций, условия сходимости.
курсовая работа, добавлен 25.01.2017Анализ результатов тестирования численного метода решения систем дифференциальных уравнений с задержанным аргументом, описывающих системы с хаотической динамикой, в пакете MatLab. Оценка фактической ошибки численного решения тестовой системы уравнений.
статья, добавлен 27.04.2019Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
курсовая работа, добавлен 19.01.2016Систематизация знаний о системах линейных уравнений. Метод Гаусса как наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Метод удобнее применять на расширенной матрице. Пример решения уравнений.
презентация, добавлен 17.05.2023Алгоритмы решения неоднородных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах для различных типов правых частей уравнений. Особенности, возникающие при решении уравнений в связи с существованием делителей нуля.
статья, добавлен 29.01.2019Понятия о комплексных числах, история их применения при решении линейных дифференциальных уравнений и вычислении интегралов. Правила сложения, вычитания, умножения и деления комплексных чисел. Порядок решения уравнений с комплексными переменными.
реферат, добавлен 06.03.2010Основные понятия в теории решения дробно-рациональных уравнений. Понятия "параметр" и "уравнение с параметром". Применение аналитического, графического метода и метода замены решения задач к решению дробно-рациональных уравнений, содержащих параметр.
курсовая работа, добавлен 29.05.2018Решение нелинейных алгебраических уравнений, подходы и методики данного процесса, его порядок и этапы. Решение системы двух нелинейных алгебраических уравнений. Определитель матрицы, ее умножение и сложение. Системы линейных алгебраических уравнений.
курсовая работа, добавлен 26.07.2012Характеристика полных, приведенных и неполных квадратных уравнений. Особенность изучения теоремы Виета. Формирование задания с отрицательным дискриминантом. Главный анализ введения комплексных чисел. Проведение исследования корней биквадратной задачи.
презентация, добавлен 16.07.2017Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.
контрольная работа, добавлен 14.12.2014Понятие модуля (абсолютной величины) действительного числа. Основные свойства модуля и его геометрический смысл. Графическое решение квадратных уравнений. Схемы решений основных типов уравнений. Особенности решения уравнения со "сложным" модулем.
контрольная работа, добавлен 05.10.2012Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.
курсовая работа, добавлен 10.02.2019