Неравенства и оценка в текстовых задачах
Систематизация теоретического материала по теме "Неравенства и оценка в текстовых задачах" и его применение к решению. Разработка типологии задач, в решении которых используется неравенства и оценка текстовых задач. Задачи, решаемые системой неравенств.
Подобные документы
Рассмотрение центральной предельной теоремы. Характеристика неравенства Чебышева, изучение его доказательства. Определение особенностей закона больших чисел в форме Чебышева. Выявление значения теоремы Бернулли, Пуассона. Формулировка неравенства Маркова.
реферат, добавлен 12.11.2015Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.
курсовая работа, добавлен 03.11.2018Описание обоснование метода устойчивого оценивания, использующего процедуру обратноквадратичного взвешивания наблюдений, вытекающей из неравенства Чебышева. Устойчивость алгоритма устойчивого оценивания, использующего вычисление весов наблюдений.
статья, добавлен 26.04.2019Рассмотрение условий и конкретных типов задач, при которых знание собственных значений характеристического полинома при решении линейных дифференциальных уравнений не является обязательным. Периодическая переходная функция при периодическом воздействии.
статья, добавлен 21.09.2016Рассмотрение общих свойств функций. Изучение области определения и множества значений функции. Характеристика экстремальных свойств. Оценка отличий монотонных функций. Определение чётности, периодичности, обратимости функций в задачах с параметром.
курсовая работа, добавлен 22.02.2019Основные правила решения иррациональных уравнений стандартного и смешанного вида. Примеры решения сложных иррациональных уравнений и нестандартных иррациональных неравенств. Особенности решения иррациональных неравенств стандартного и смешанного вида.
контрольная работа, добавлен 22.12.2011Характеристика особенностей уравнений с параметрами. Ознакомление со способами нахождения абсциссы и построения "склеенных" гипербол. Анализ методов выделения в уравнении полных квадратов и разложения его на множители. Изучение неравенств с параметрами.
контрольная работа, добавлен 29.05.2017Ознакомление с основными этапами решения тригонометрических неравенств. Рассмотрение и анализ процесса перехода от синуса и косинуса в прямоугольном треугольнике. Исследование специфических особенностей схемы решения тригонометрических уравнений.
творческая работа, добавлен 29.11.2016Умение решать задачи. Психологические исследования проблемы обучения решению задач. можно ли научиться решать любые задачи. Практические и математические задачи. Правила для стандартных задач, как искать план решения задачи и процесс ее решения.
реферат, добавлен 26.09.2008Понятийный аппарат векторного метода решения задач. Основные свойства произведения вектора на число. Методика решения задач аффинной геометрии векторным методом. Задачи, связанные с доказательством параллельности прямых и отрезков, прямых и плоскости.
курсовая работа, добавлен 12.02.2013Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.
курсовая работа, добавлен 13.10.2017Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.
книга, добавлен 19.05.2011Скалярное произведение векторов и его использование в решении пространственных задач. Применение основных векторных соотношений к решению стереометрических задач. Основные векторные и координатные формулы, связанные со скалярным произведением векторов.
курсовая работа, добавлен 26.02.2013Понятие задачи-ловушки. Развитие логического мышления при их решении. Допущение обучающимися "смешных" ошибок по невнимательности при решении несложных математических задач. Примеры типичных ошибок. Психологическая инерция как главная причина трудностей.
статья, добавлен 15.03.2019Нестандартные приемы решения уравнений и неравенств, содержащих модуль, изучаемых на дополнительных занятиях и при решении олимпиадных задач. Типовые задания на решение уравнений и неравенств. Задания тестовых вариантов Единого Национального Тестирования.
дипломная работа, добавлен 12.11.2014- 66. Об опыте использования математических задач с экономическим содержанием в профориентационной работе
Исследование возможностей использования математических задач с экономическим содержанием в профориентационной работе с обучающимися. Характеристика примеров решения задач на проценты и задач, в которых используется понятие функции и ее производной.
статья, добавлен 18.07.2021 Значение арифметических задач для умственного развития детей дошкольного возраста. Основные виды и компоненты арифметических задач. Методика и этапы обучения детей решению математических задач. Анализ арифметических задач, составленных дошкольниками.
реферат, добавлен 24.11.2015Анализ сущности и свойств тригонометрических и обратных тригонометрических функций. Характеристика основных методов решения элементарных тригонометрических уравнений, а также примеры решения нестандартных тригонометрических уравнений и неравенств.
курсовая работа, добавлен 09.11.2017Описание модификации метода главных компонент, использующей веса наблюдений, получаемых с использованием неравенства Чебышева. Анализ и оценка устойчивости этого способа по отношению к стандартному методу главных компонент при различной доле шума.
статья, добавлен 26.04.2019Общая характеристика методов исследования вариационных задач. Рассмотрение необходимых и достаточных условий справедливости интегро-дифференциального неравенства Виртингера. Знакомство с основными особенностями модифицированной функции Бесселя I рода.
статья, добавлен 26.04.2019Построение на плоскости области решений линейных неравенств и геометрическое решение максимального и минимального значения целевой функции в этой области. С помощью симплекс-метода определение максимума целевой функции при данной системе ограничений.
контрольная работа, добавлен 27.03.2015Условие критичности частного уравнения или неравенства. Поиск множества всех критических точек уравнения. Определение граничных значений параметров в произвольном пространстве на плоскости. Понятие открытого множества. Графическое решение неравенств.
лекция, добавлен 01.09.2017Систематическое обучение студентов решению прикладных задач методом моделирования как один из путей реализации компетентностного подхода. Выявление затруднений, возникающих у студентов на этапах формализации условия задачи и интерпретации результатов.
статья, добавлен 16.06.2018Уравнения прямой на плоскости, его тождественное преобразование и основные понятия. Взаимное расположение прямых. Расстояние от точки до прямой. Семейство прямых на плоскости. Геометрический смысл линейного неравенства и системы линейных неравенств.
реферат, добавлен 16.05.2013Получение точных неравенств типа Джексона на классах дифференцируемых функций двух переменных. Исследование оператора обобщенного сдвига в метрике пространства L2,p(R2) с весом Чебышева-Эрмита. Ортонормированная система алгебраических полиномов Эрмита.
статья, добавлен 30.10.2016