Особенности гипотезы Бернулли
Рассмотрение основных методов сопротивления материалов. Несущая способность как способность материала воспринимать внешнюю нагрузку не разрушаясь. Характеристика гипотезы Бернулли, сферы применения. Знакомство с особенностями метода мысленных сечений.
Подобные документы
Определение вероятности по формулам Бернулли и Байеса. Проведение исследования интегрального закона распределения. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Особенность построения статистического разделения.
контрольная работа, добавлен 24.05.2016Рассмотрение общей структуры методов поиска глобального оптимума. Характеристика классификации основных методов глобальной оптимизации по методологическому критерию. Особенность выбора и обоснования метода глобального поиска для прикладной задачи.
статья, добавлен 07.08.2020- 103. Числа правят миром
Любопытные свойства натуральных чисел, которые обнаруживаются при выполнении над ними арифметических действий. Сущность задачи о ростовщике представителя знаменитой швейцарской династии математиков Якоба Бернулли. Приметы и суеверия о числах 7 и 13.
доклад, добавлен 10.09.2014 Первое появление константы в приложении к переводу на английский язык работы Непера 1618 года. Решение задачи о предельной величине процентного дохода математиком Бернулли. Математические письма Лейбница Гюйгенсу. Решения дифференциальных уравнений.
курсовая работа, добавлен 03.06.2014Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018- 106. Теория вероятности
Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 17.04.2015 - 107. Теория вероятностей
Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017 - 108. Теория вероятности
Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.
курс лекций, добавлен 29.09.2014 - 109. Понятие сферы
Ознакомление с понятиями сферы, шара, окружности, круга. Исследование и характеристика принципов взаимного расположения сферы и плоскости. Рассмотрение исторических сведений о сфере и шаре. Изучение особенностей изображения сферы. Анализ уравнения сферы.
презентация, добавлен 13.12.2020 Практические следствия методологии прикладной статистики. Использование асимптотических результатов при конечных объемах выборок. Выбор одного из многих критериев для проверки конкретной гипотезы. Введение моделей деятельности математика и прикладника.
статья, добавлен 20.05.2017Знакомство с особенностями построения математической модели глубины лазерного резания березы. Общая характеристика лазерно-гравировального станка VL-4060, анализ основных функций. Рассмотрение уровней и интервалов варьирования переменных факторов.
статья, добавлен 29.11.2018Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.
контрольная работа, добавлен 19.03.2014Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Случай, случайные явления, события, величины, их законы, их свойства и операции над ними. Комплексное изучение истории возникновения, становления и развития теории вероятностей. Два знаменитых вопроса шевалье де Мере. Закон больших чисел в форме Бернулли.
презентация, добавлен 10.02.2020- 115. Случайные величины
Случайная величина – числовая функция, принимающая значения случайным образом. Дискретные распределения. Графическое задание ряда распределения. Смысл номера первого успешного испытания в схеме Бернулли с вероятностью успеха. Пуассоновская модель.
презентация, добавлен 27.09.2017 Определение понятия секущей плоскости многогранника. Задания на построение сечения тетраэдра, пирамиды и многогранника плоскостью, заданной тремя точками. Сущность аксиоматического метода. Проверка правильности построения сечений многогранников.
презентация, добавлен 06.10.2011- 117. Численные методы
Анализ особенностей ортогональных систем векторов. Знакомство с численными методами решения задач. Рассмотрение приемов ортогонализации столбцов матрицы. Характеристика способов применения методов ортогонализации к решению систем линейных уравнений.
курсовая работа, добавлен 13.07.2013 - 118. Теория вероятности
Независимость событий и случайность отбора. Использование формулы Пуассона и формулы Бернулли. Закон распределения и числовые характеристики. Соотношение доверительной вероятности и коэффициента доверия. Несмещенные оценки математического ожидания.
контрольная работа, добавлен 23.04.2013 Формулы Бейеса и Бернулли. Понятие непрерывной случайной величины. Биноминальное распределение и распределение Пуассона. Числовые характеристики дискретных случайных величин. Условные законы распределения, линейная регрессия. Закон больших чисел.
курс лекций, добавлен 18.10.2017Геометрический закон распределения, функции его параметров на основе метода достаточных статистик. Интервальная и асимптотически оптимальная оценка неизвестных параметров геометрического закона распределения. Алгоритм проверки статистической гипотезы.
курсовая работа, добавлен 07.12.2009Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.
контрольная работа, добавлен 25.01.2015Характеристика правильных многогранников. Основные особенности теории Кеплера и космической теории Платоновых тел. Гипотезы обустройства мира. Значение идеи Пифагора, Платона, Кеплера о связи правильных многоугольников с гармоничным устройством мира.
реферат, добавлен 03.12.2011Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.
контрольная работа, добавлен 02.02.2010Простейшая задача вариационного исчисления. Основные методы выведения уравнения Эйлера-Бернулли. Необходимые условия второго порядка для статистических задач в вариационном исчислении Лежандра. Условия Вейерштрасса для точки излома допустимой траектории.
презентация, добавлен 21.08.2015Понятие функции, ее график, история развития. Великие математики и их труды: Лейбниц, Бернулли, Эйлер, Лобачевский. Примеры функций, которые рассматриваются в школе: линейная, тригонометрическая и пр. График гармонического колебания, свободного падения.
презентация, добавлен 16.11.2015