Применение методов дисперсионного анализа в экономике
Дисперсионный анализ как раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента. Методика его проведения. Изменение качественных факторов в процессе наблюдения за исследуемым объектом.
Подобные документы
Подготовка данных к дисперсионному анализу: уравновешивание комплексов. Проверка нормальности распределения результативного признака. Преобразование эмпирических данных с целью упрощения расчетов. Графическое представление метода для несвязанных выборок.
курсовая работа, добавлен 19.03.2017Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.
учебное пособие, добавлен 22.06.2014Объективные и субъективные методы определения вероятности. Теория использования математической статистики, Байесовских сетей для вычисления вероятности событий. Методы экспертного анализа риска, частичного баланса, имитационные, моделирования Монте-Карло.
статья, добавлен 24.05.2018Результат эксперимента как случайная величина. Свертывание цифровой информации: математическое ожидание, распределение Стьюдента, ошибка косвенных измерений. Статистические гипотезы, уровень значимости. Методы исключения выбросов (грубых ошибок).
методичка, добавлен 11.09.2015- 55. Алгебра матрицы
Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.
реферат, добавлен 25.05.2017 Роль математики, ее логического и вычислительного аппарата в естественно-научных, инженерно-технических и гуманитарных исследованиях. Использование методов математической статистики, линейного программирования, информационных технологий в экономике.
реферат, добавлен 20.03.2014Выборка, основные задачи математической статистики. Различные эмпирические функции распределения. Выборочные характеристики случайной величины. Примеры параметрических семейств распределений. Оценивание неизвестных параметров. Методы получения оценок.
контрольная работа, добавлен 19.03.2015Статистическое описание и выборочные характеристики двумерного случайного вектора. Линейная регрессия, задачи линейного регрессионного анализа. Однофакторный дисперсионный анализ. Границы доверительных интервалов для параметров линейной регрессии.
курсовая работа, добавлен 28.10.2017Модальность как одна из качественных специфических особенностей эмоционального реагирования. Методика построения системы дифференциальных уравнений, описывающих протекание эмоции. Аппарат иммунных систем - способ реализации математической модели.
статья, добавлен 19.01.2018- 60. Выпуклые функции
Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.
методичка, добавлен 08.09.2015 F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Основные понятия математической статистики. Оценка параметров, проверка гипотез и основы регрессионного анализа. Точечное и интегральное оценивание и их эффективность. Критерии согласия и линейная регрессия. Метод наименьших квадратов. Теорема Пирсона.
курс лекций, добавлен 03.07.2013- 63. Возможности использования доверительного интервала при принятии параметров нормализованной модели
Получение математической модели при её адекватности экспериментальной информации как одна из наиболее важных целей регрессионного анализа. Методика определения среднего значения серии опытов в центре плана и дисперсии воспроизводимости эксперимента.
статья, добавлен 26.08.2021 Общая схема использования аксиоматического подхода при сопоставлении и выборе методов обработки данных. Задача вычисления удельного веса индексных факторов в мультипликативных индексных моделях. Характеристика основных методов вычисления вклада факторов.
статья, добавлен 20.07.2021Предмет и методы математической статистики. Основные понятия выборочного метода. Вероятностные модели порождения данных. Эмпирическая функция распределения, гистограмма. Формула Стерджесса. Поточечная сходимость по вероятности гистограммы к плотности.
контрольная работа, добавлен 17.04.2016Построение математической модели внутренней структуры дисперсных систем. Результаты исследования процесса структурообразования дисперсных систем и влияния различных факторов на поведение данных систем с использованием разработанной математической модели.
автореферат, добавлен 02.05.2018Особенности системного подхода к решению задач управления. Основные понятия математической статистики. Этапы системного анализа. Изучение методов анализа больших систем, планирование экспериментов. Экспертные оценки, ранговая корреляция и конкордация.
курс лекций, добавлен 23.07.2015Ознакомление с методами решения основных задач математической статистики с использованием критерия согласия Пирсона. Изучение характеристических функций, которые используются в дальнейшем в теории математической статистики и теории вероятностей.
курсовая работа, добавлен 21.04.2015Обработка данных наблюдений и проверка разных гипотез. Построение гистограммы выборки и теоретической нормальной кривой. Элементы корреляционного анализа. Корреляционная таблица и корреляционное поле. Нахождение выборочного коэффициента корреляции.
курсовая работа, добавлен 20.06.2015Оценка влияния факторов на элементы классов, найденных по критериям Шеннона, Пирсона, Колмогорова и Уилкоксона Сравнение факторов по степени информативности методом обобщенной ранжировки объектов с учетом мнений всех экспертов и коэффициента конкордации.
статья, добавлен 06.07.2013Предмет и общие принципы математической статистики как раздела математики, посвященного математическим методам систематизации и обработки данных. Раскрытие содержания закона больших чисел как метода определения эмпирического среднего в конечной выборке.
реферат, добавлен 07.07.2013Рассмотрение варианта перехода от классической математической статистики к нечётко-логической интерпретации данных медицинской статистики. Плотность распределения частоты заболеваний. Анализ функции ошибки, с выделением интервалов правдоподобия.
статья, добавлен 24.07.2018Процесс поиска решения, приводящего к максимуму планируемого результата, путём учёта совокупности факторов, которые увеличивают конечный результат или уменьшают его. Реализация методики оценки эффективности принимаемого решения на конкретном примере.
статья, добавлен 04.02.2019Основные понятия и определения математической статистики. Ее теоретические основы как науки. Характеристики выборочной и генеральной совокупности. Основные способы формирования выборочной совокупности. Многоступенчатый отбор и многофазная выборка.
лекция, добавлен 08.07.2014Анализ интерполяции функций, построение по заданной функции другой, значения которой совпадают со значениями заданной функции в некотором числе точек. Применение методов вычислительной математики для исследования результатов химического эксперимента.
курсовая работа, добавлен 07.05.2020