Теоретические основы кластерного анализа
Кластеризация, решение задач коммивояжера с помощью генетических алгоритмов. Разбиение участников рейда на группы методом древовидной кластеризации, выявление центра сбора участников с помощью генетических алгоритмов. Проверка качества кластеризации.
Подобные документы
Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Применение переборных алгоритмов в рамках задачи оптимизации транспортной логистики. Задачи применения генетических алгоритмов. Особенности работы операторов скрещивания. Способы решения проблемы перекрестного скрещивания в задаче коммивояжера.
доклад, добавлен 28.04.2014Рассмотрение основных современных подходов к кластеризации данных. Описание предшествующих решений и предоставление версии алгоритма мультимодальной кластеризации для запуска в системе распределённых вычислений под Apache Hadoop. Адаптация алгоритма.
дипломная работа, добавлен 30.08.2016Описания технологий слабого искусственного интеллекта. Биологическое происхождение алгоритмов кластеризации. Изучение группы векторов признаков и инициализированных векторов-прототипов. Алгоритмы муравья или оптимизация по принципу муравьиной колонии.
контрольная работа, добавлен 21.12.2016Анализ понятия таргетирования – основного инструмента персонализации. Характеристика особенностей персонализации на сайтах. Определение сущности кластеризации (кластерного анализа) — задачи разбиения множества объектов на группы, называемые кластерами.
контрольная работа, добавлен 18.06.2016Ознакомление с объектами кластеризации, которыми являются электронные текстовые документы. Рассмотрение этапов выполнения алгоритма нечеткой кластеризации. Изучение и анализ диаграммы вариантов использования для пользователя исследуемого приложения.
реферат, добавлен 18.01.2018Проблема разработки универсальных методов, пригодных для обработки информации. Оценка возможности использования модифицированного алгоритма кластеризации в задаче опорно-двигательного аппарата. Анализ и описание основных этапов алгоритма Хамелеон.
лекция, добавлен 30.01.2016Решение задач автоматической кластеризации новостных документов, расстановка списка тематических меток для всех классов. Тематические метки и ключевые слова, биграммные конструкции. Кластеризация, грамматика конструкций, эксперимент, соответствующий цели.
дипломная работа, добавлен 29.10.2017- 34. Сравнение эффективности применения классических и интеллектуальных методов решения задач оптимизации
Реализация и применение методов покоординатного спуска, генетических алгоритмов и метода PSO. Выбор функции для оценки качества работы алгоритмов, реализующих методы оптимизации. Разработка программного обеспечения. Мерный вектор псевдослучайных чисел.
курсовая работа, добавлен 13.01.2016 - 35. Нечеткая кластеризация потоков данных с помощью ЕМ-алгоритма на основе самообучения по Т. Кохонену
Описание мягкого вероятностного нечеткого алгоритма кластеризации многомерных данных, последовательно поступающих на обработку в режиме реального времени. Использование алгоритма для решения задач Dynamic Stream Mining в условиях перекрывающихся классов.
статья, добавлен 19.06.2018 Структурно-функциональное решение интеллектуального репозитория. Подсистема нейросетевой и генетической кластеризации, их особенности, преимущества. Алгоритм параллельного выполнения fcm-кластеризации. Предназначение кроссовера, оценка приспособленности.
статья, добавлен 18.01.2018Возможности экспертных систем. Принципы работы дерева решений. Структура нейронных сетей, принципы проектирования с помощью пакета Matlab. Оптимизация функции с помощью генетических алгоритмов. Муравьиные алгоритмы поиска оптимального маршрута в графе.
учебное пособие, добавлен 29.02.2016Рассмотрение различных модификаций генетического алгоритма для адаптации в нестационарных средах. Исследование нестационарных задач дискретной оптимизации. Характеристика особенностей генетического алгоритма, обладающего свойством неявного параллелизма.
статья, добавлен 17.01.2018Исследование методов, использующих оптимальность по Парето на основе генетических алгоритмов. Описание преимуществ метода SPEA (Strength Pareto Evolutionary Algorithm) и SPEA2 по отношению к другим наиболее часто применяемым методам VEGA, FFGA, NSGA.
статья, добавлен 27.07.2017Решение задач оптимизации и структурного синтеза. Поиск путей повышения эффективности генетических алгоритмов. Экспериментальная оценка эффективности методов с фрагментарными кроссовером и макромутациями. Решение NP-трудных задач дискретной оптимизации.
статья, добавлен 19.01.2018История возникновения метода муравьиных алгоритмов. Применение муравьиных алгоритмов для задачи коммивояжера. Достоинства и недостатки данного метода. Код программы, реализующей муравьиный алгоритм, экспериментальное исследование его трудоемкости.
курсовая работа, добавлен 18.05.2013- 42. Программа нечеткого вывода, построенная с использованием генетических алгоритмов и знаний экспертов
Представление реализации системы нечеткого вывода с использованием генетических алгоритмов и экспертных знаний. Использование мнений экспертов, выраженных в виде правил. Возможность по выделению первичных данных из файла путем применения алгоритма.
дипломная работа, добавлен 27.08.2016 Исследуются процессы синхронизации, протекающие в осцилляторных сетях различной топологии. Оценка локальной и глобальной синхронизации осцилляторов в сети. Способы использования осцилляторных сетей при решении задач кластеризации N-мерных данных.
статья, добавлен 15.01.2019Применение кластеризации данных для решения задачи группировки графических образов. Построение схемы последовательной кластеризации сложной графической информации. Обзор вопроса выбора меры различия, учитывающей степень визуального сходства изображений.
статья, добавлен 31.08.2018Изучение научного направления "Природные вычисления" на примере муравьиных алгоритмов, теоретическая основа, их работа, моделирование и решение задач оптимизации, результаты исследования и реализация проекта с помощью языка программирования Delphi.
курсовая работа, добавлен 08.01.2014Применение генетических алгоритмов (ГА), эффективных при решении задач оптимизации, их преимущества и недостатки. Процесс настройки и контроля параметров конкретного ГА, его влияние на эффективность решения задачи. Результаты тестирования алгоритмов.
статья, добавлен 29.04.2018Проверка оптимальности и эффективности, точности работы нескольких онлайн-калькуляторов с помощью сформулированной задачи нелинейного программирования. Оптимальное решение приведенной задачи симплекс-методом. Проверка правильности алгоритмов решения.
лабораторная работа, добавлен 27.05.2014Этапы решения технических задач с помощью электронных вычислительных машин. Постановка задачи и построение алгоритма. Метод математического моделирования реальных явлений. Элементы теории алгоритмов. Свойства алгоритма и его описание, символы для схем.
лекция, добавлен 25.01.2012Рассмотрение общей схемы алгоритма кластеризации семантических дескрипторов, необходимого для анализа данных, представленных в виде текстов на естественном языке. Влияние различных параметров алгоритма на общую схему работ и перспективы развития подхода.
статья, добавлен 28.01.2020Анализ существующих подходов к решению задач структурного синтеза в проектировании и логистике. Разработка новых генетических методов структурного синтеза проектных решений. Параметры, управление которыми повышает эффективность генетических алгоритмов.
автореферат, добавлен 31.03.2018