Теоритические основы аксиоматики Вейля
"Единая теория поля" — первая подлинно геометризованная концепция, толкующая электромагнитное поле как геометрический феномен. Четыре группы аксиом Вейля и доказательства их справедливости с построением математических моделей систем.
Подобные документы
Опис умов усіх максимальних акретивних розширень. Аналог поняття функції Вейля та інших оператор-функцій, пов'язаних із секторіальними операторами, властивості. Функціональна модель даного оператора, опис резольвент максимальних акретивних розширень.
автореферат, добавлен 07.01.2014Розв'язання матричної інтерполяційної задачі Шура. Визначення зв'язку між радіусами граничного круга Вейля в задачі Шура і властивостями відповідного стиску. Аналіз властивостей моделі неунітарного стиску, яка побудована за допомогою параметрів Шура.
автореферат, добавлен 27.07.2014Проведение исследования бинарной и унарной алгебраических операций на множестве. Особенность формализации нечеткой информации для построения математических моделей. Характеристика аксиом меры нечеткости. Основные виды метрик функциональных пространств.
лабораторная работа, добавлен 06.10.2017- 29. Скалярное поле
Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.
лекция, добавлен 08.05.2015 Применение математических моделей в практике стандартизации. Модель для оценки степени сближения позиций сторон при проведении переговоров. Теория регулярных марковских цепей в зависимости времени достижения консенсуса от авторитарности экспертов.
статья, добавлен 30.04.2018Дослідження *-алгебр, асоційованих із зірчастими графами. Розгляд проблеми Г. Вейля, яка виникає про складанні двох ермітових матриць. Опис множини параметрів розширеного графу Динкіна. Структурні теореми для *-алгебр, породжених наборами проекторів.
автореферат, добавлен 28.09.2015Принципы построения формальных теорий. Проблемы, связанные с системой аксиом. Доказательство независимости системы аксиом. Исчисление высказываний, символы и формулы. Теорема дедукции и правило силлогизма (транзитивный вывод). Примеры решения задач.
презентация, добавлен 17.04.2013- 33. Теория поля
Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.
лекция, добавлен 29.09.2014 Начало аксиоматической теории высказываний: первоначальные понятия, система аксиом, правило вывода. Общая характеристика вывода и его свойства. Теорема о дедукции и следствия из нее, сферы практического применения. Основные производные данного правила.
лекция, добавлен 07.12.2014Общие признаки и свойства моделей. Характеристика материальных и идеальных моделей, их классификация. Описание непрерывных и дискретных математических моделей, их основные понятия и положения. Условия скачкообразного изменения выходных свойств систем.
реферат, добавлен 21.10.2014Центральная предельная теорема для экстремальных характеров бесконечной симметрической группы и для планшерелевских представлений бесконечной унитарной группы. Анализ перемежающихся последовательностей Керова и случайных матриц. Доказательства теорем.
диссертация, добавлен 28.12.2016Этапы разработки математической модели электромеханической системы. Определение допущений и начальных условий, определяемых физическим смыслом задачи. Методы решения математических уравнений, описывающих процессы. Интерпретация результатов моделирования.
презентация, добавлен 20.04.2017- 38. Теория графов
Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.
контрольная работа, добавлен 03.04.2013 Рассмотрение физических примеров скалярных полей. Нахождение и изображение линии и поверхности уровня скалярных полей. Изучение понятия вектор-градиент скалярного поля. Рассмотрение физического смысла потока векторного поля. Циркуляция векторного поля.
презентация, добавлен 27.06.2015Построение абстрактных математических моделей, представленных на языке математических отношений в терминах определенной математической теории. Изучение системы массового обслуживания. Определение длительности обслуживания заявок. Дисциплины обслуживания.
презентация, добавлен 22.01.2016Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
презентация, добавлен 01.09.2015Актуальность решения текстовых задач в современной методике преподавания математики. Понятие и роль текстовых задач в курсе алгебры. Психолого-педагогические основы формирования умения решать данные задачи. Алгебраический и геометрический метод решения.
презентация, добавлен 01.03.2015Математические предложения и их доказательства в курсе геометрии основной школы. Индукция и дедукция как основные приемы обоснования математических предложений. Воспитание потребности в логическом доказательстве. Методика изучения конкретной теоремы.
контрольная работа, добавлен 02.04.2016Понятие геометрического места точек как поверхностного уровня скалярного поля. Порядок определения скорости изменения поля по направлениям координатных осей. Сущность градиента функции, особенности расчета. Теорема об ортогональности вектора градиента.
лекция, добавлен 17.01.2014Математическая модель как математическое представление реальности, один из вариантов модели - системы, исследование позволяет получать информацию о некоторой другой системе. Вывод математических уравнений, описывающих состояние и характеристики системы.
презентация, добавлен 20.05.2017Развитие дедукционного метода в геометрии от "Начал" Эвклида до аксиоматики Гильберта. Основные понятия геометрии - аксиомы и постулаты, соотношения между ними; определения фигур и доказательства геометрических предложений; модели Лобачевского и Клейна.
книга, добавлен 28.03.2013Теория игр как теория математических моделей принятия решений в условиях столкновения, когда игрок располагает информацией о множестве возможных ситуаций. Понятие и отличительные особенности динамической игры, составление и структура его дерева.
контрольная работа, добавлен 10.04.2014Виды систем массового обслуживания. Методы разработки математических моделей в данных системах. Подготовка данных и проверка статистических гипотез. Модели со стоимостными характеристиками. Моделирование с учетом предпочтительности уровня обслуживания.
курсовая работа, добавлен 11.12.2014Аналитический обзор научных исследований по построению и изучению математических моделей транспортных систем. Вероятностные модели на базе многофазных систем массового обслуживания с групповыми потоками. Структура микрологистических транспортных систем.
статья, добавлен 21.07.2021Составление математических моделей статики и динамики объектов с сосредоточенными и распределенными координатами. Исследование алгоритмов генерации псевдослучайных процессов для целей имитационного моделирования. Конечномерные задачи оптимизации.
учебное пособие, добавлен 28.11.2013