Численное интегрирование

Три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула Симпсона (формула парабол), ее применение.

Подобные документы

  • Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.

    методичка, добавлен 26.09.2016

  • Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.

    контрольная работа, добавлен 09.04.2016

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Определение первообразной функции. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.

    контрольная работа, добавлен 05.04.2021

  • История интегрального исчисления. Определение и свойства интеграла, подходы к его изучению, их достоинства и недостатки. Характеристика криволинейной трапеции. Свойства определенного интеграла. Набор стандартных картинок. Аспекты применения интеграла.

    курсовая работа, добавлен 22.04.2011

  • Изучение сущности определенного интеграла – средства исследования в математике, физике, механике. Определение площади криволинейной трапеции. Ознакомление с функциями определенного интеграла. Рассмотрение геометрического смысла определенного интеграла.

    контрольная работа, добавлен 17.01.2015

  • Использование метода неопределенных коэффициентов для нахождения значений. Решение задачи, приводящей к понятию определенного интеграла. Определенный интеграл как предел интегральной суммы. Рассмотрение способов вычисления определенного интеграла.

    контрольная работа, добавлен 09.04.2018

  • Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.

    презентация, добавлен 17.09.2013

  • Понятие, определение и свойства неопределенного интеграла. Представление рациональной функции в виде суммы простейших дробей. Интегрирование простейших дробей. Понятие дифференциального бинома. Примеры вычисления интегралов от дифференциального бинома.

    курсовая работа, добавлен 10.12.2017

  • Математическая модель и алгоритмическое описание процесса приближенного интегрирования. Применение составной квадратурной формулы трапеций для повышения эффективности вычислений при использовании подпрограммы. Тестирование стандартной подпрограммы.

    статья, добавлен 26.01.2019

  • Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.

    контрольная работа, добавлен 10.05.2016

  • Рассмотрение сведения интеграла путём выделения полного квадрата в подкоренном выражении в зависимости от знака. Особенности разбиения исходного интеграла на два более простых. Исследование основных методов сведения к интегралу от рациональной функции.

    задача, добавлен 22.04.2015

  • Исследование сходимости рядов по признаку сходимости Даламбера. Определение интеграла с точностью до 0,001 путем предварительного разложения подинтегральной функции в ряд и почленного интегрирования этого ряда. Определение функции Лапласа.

    контрольная работа, добавлен 18.03.2014

  • Схема Гаусса с выбором главного элемента. Метод единственного деления. Метод квадратного корня. Метод Халецкого. Итерационные методы. Методы получения характеристического многочлена. Частичная проблема собственных значений. Метод вращения с преградами.

    методичка, добавлен 15.09.2012

  • Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.

    реферат, добавлен 06.03.2023

  • Решение вариационной задачи теории мультипликативного интеграла. Исследование вариаций на экстремум функционала. Кривизна криволинейного мультипликативного интеграла как линейная функция относительно переменных. Теория мультипликативного интеграла.

    статья, добавлен 31.05.2013

  • Особенности вычисления двойного интеграла в прямоугольных декартовых координатах. Границы изменения переменной интеграции при постоянном значении второго аргумента. Правила определения тройного интеграла посредством ряда однократных интегрирований.

    лекция, добавлен 13.12.2015

  • Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.

    задача, добавлен 09.06.2014

  • Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.

    презентация, добавлен 18.09.2013

  • Методика определения определенного интеграла. Нахождение площадей плоских фигур. "Неопределенный интеграл" или "множество всех первообразных", основные понятия и формулы. Нахождение интеграла (интегрирование), исходя из его геометрического смысла.

    контрольная работа, добавлен 11.11.2010

  • Исследование механизма решения задач С3 при помощи метода интервалов. Метод интервалов для рациональных неравенств. Метод равносильных переходов. Метод равносильных переходов. Характеристика метода сравнения основания с единицей и рационализации.

    презентация, добавлен 03.05.2017

  • Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.

    контрольная работа, добавлен 04.01.2015

  • Определение и условие существования определенного интеграла, геометрические приложения: длина дуги, объем тела, площадь поверхности. Физические приложения: работа переменной силы, давление жидкости; статические моменты и координаты центра тяжести.

    контрольная работа, добавлен 12.06.2012

  • Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.

    курсовая работа, добавлен 26.12.2012

  • Определение унимодальности функции. Точные и приближенные методы поиска экстремума. Метод перебора, по разрядного поиска, дихотомии, золотого сечения, средней точки, хорд и метод Ньютона. Сравнение методов оптимизации по скорости вычисления и точности.

    курсовая работа, добавлен 21.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.