Математический анализ
Пределы функции, её исследование. Неопределенный и определенный, несобственный интеграл, его практическое применение. Числовые и степенные ряды, сходимость, признак Даламбера, принцип Лейбница. Функции нескольких переменных, дифференциальные уравнения.
Подобные документы
Числовые ряды: знакопостоянные и знакопеременные, функциональные и степенные ряды. Необходимые и достаточные признаки абсолютной и условной сходимости ряда, признак Коши; признак Даламбера. Указания по разложению функций в ряды Тейлора по степеням.
методичка, добавлен 05.04.2014Дифференциальные уравнения первого, второго и высших порядков. Ряды Тейлора и Маклорена. Евклидово пространство. Понятие функции нескольких переменных. Задачи оптимизации. Приложения определенного интеграла. Матрицы и действия с ними. Числовые ряды.
учебное пособие, добавлен 15.09.2017Последовательности и числовые ряды. Абсолютная и условная сходимость. Ряды с положительными членами, функциональные и знакочередующиеся, действия с ними и признаки их сравнения. Достаточные признаки сходимости знакоположительных рядов. Признак Лейбница.
курс лекций, добавлен 29.09.2014Основные понятия векторной алгебры. Аналитическая геометрия в пространстве. Введение в математический анализ. Дифференциальное исчисление, неопределенные и определенные интегралы. Функции нескольких переменных. Ряды и дифференциальные уравнения.
учебное пособие, добавлен 09.12.2016Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.
контрольная работа, добавлен 29.01.2013Понятие сходимости числового ряда. Сходимость положительных рядов. Признак Даламбера с использованием нижнего и верхнего предела. Объединённый признак Даламбера, радикальный признак Коши. Перестановки числовых рядов. Теорема об универсальных рядах.
контрольная работа, добавлен 26.12.2011Понятие числовых рядов и их свойства. Ряды с неотрицательными членами. Признаки Даламбера и Коши. Знакопеременные ряды. Свойства абсолютно сходящихся рядов. Функциональные последовательности, их графики. Функциональные и степенные ряды, их сходимость.
лекция, добавлен 10.12.2011Изложение теории математического анализа. Обзор тем курса: предел функции; основы дифференциального исчисления; исследование функции и построение графика; функции двух переменных; неопределённый и определённый интегралы; дифференциальные уравнения; ряды.
методичка, добавлен 22.10.2014Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.
курс лекций, добавлен 07.03.2015Вычисление неопределенного интеграла. Изображение фигуры, ограниченной параболой и прямой, определение её площади. Исследование сходимости степенного ряда на концах интервала. Применение достаточного признака экстремума функции независимых переменных.
контрольная работа, добавлен 07.04.2017Определение функции нескольких переменных. Дифференциальные уравнения первого и высших порядков. Основные теоремы операционного исчисления (преобразования Лапласа). Числовые и знакоположительные ряды. Разложение в ряд Фурье четных и нечетных функций.
курс лекций, добавлен 18.02.2012- 12. Числовые ряды
Нахождение аппроксимирующих функций с помощью теории рядов. Достаточные признаки сходимости. Интегральный признак Коши, Лейбница и Даламбера. Теорема Абеля. Дифференцирование и интегрирование. Разложение основных элементарных функций в ряд Маклорена.
лекция, добавлен 18.10.2013 Некоторые сведения о последовательностях. Понятия, свойства числовых, функциональных, знакопеременных, степенных рядов. Признаки их сходимости: сравнения, Даламбера, Коши, Лейбница. Теорема Абеля. Разложение основных элементарных функций в степенные ряды.
курс лекций, добавлен 22.06.2014Обоснование теорем Даламбера относительно знакочередующихся рядов, члены которых поочередно то неотрицательны, то отрицательны. Вычисление интервала и радиуса сходимости, которые вычисляют, воспользовавшись радикальным признаком Коши. Формула Стокса.
реферат, добавлен 17.05.2012- 15. Числовые ряды
Теоретический обзор числовых рядов: их определение и сходимость. Основные свойства числовых рядов: признаки сходимости и расходимости. Характеристика знакочередующихся и знакопеременных рядов. Признак сходимости Лейбница. Ряды с положительными членами.
методичка, добавлен 02.07.2014 - 16. Ряды Фурье
Решение граничных задач. Определение числового ряда. Основные свойства числовых рядов. Признаки сходимости Лейбница. Ряды с положительными членами. Знакочередующиеся и знакопеременные ряды. Числовые и функциональные ряды. Ряды и интеграл Фурье.
курсовая работа, добавлен 03.07.2014 Интегрирование иррациональных выражений и выражений, содержащих тригонометрические функции. Методы интегрирования простейших дробей. Первообразная, неопределенный интеграл и его свойства. Таблица основных формул интегрирования. Формула Ньютона–Лейбница.
лекция, добавлен 29.09.2014Исследование понятия двойных и повторных рядов. Обобщение необходимых и достаточных признаков сходимости. Понятие знакопеременного ряда. Сущность признака Лейбница. Абсолютная и условная сходимость ряда. Понятие функционального ряда. Степенные ряды.
курсовая работа, добавлен 20.06.2013Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.
контрольная работа, добавлен 12.01.2013- 20. Числовые ряды
Определения, понятия и элементарные свойства сходящихся числовых рядов. Необходимое условие и достаточные признаки сходимости знакоположительного ряда. Признаки сравнения; признаки Даламбера, Коши. Исследование знакопеременных рядов; теорема Лейбница.
курс лекций, добавлен 30.07.2017 Изучение интегральных вычислений в курсе математического анализа. Определение риманового числа. Понятие непрерывной периодической функции. Анализ признаков сходимости ряда. Доказательство теорем о несобственном интеграле непрерывной периодической функции.
курсовая работа, добавлен 02.10.2021Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.
контрольная работа, добавлен 01.03.2017Применение правила Лопиталя к неопределенностям. Составление уравнения касательных к гиперболе. Исследование функции, нахождение экстремумов и построение ее графиков. Вычисление интеграла заменой переменных и с использованием формулы Ньютона-Лейбница.
контрольная работа, добавлен 17.02.2011Понятие первообразной от функции. Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Задачи о нахождении площади плоской фигуры. Несобственный интеграл.
лекция, добавлен 12.04.2012Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.
курс лекций, добавлен 23.10.2013