Применение математических методов в исследовании процессов деревообработки

Теоретические основы постановки и решения инженерных задач. Решение алгебраических и трансцендентных уравнений с одной переменной и систем алгебраических уравнений. Интерполяция, аппроксимация и численное интегрирование табличных и сложных функций.

Подобные документы

  • Использование свойств показательной и логарифмической функций для решения уравнений и неравенств. Практическое применение метода введения новых переменных, подстановки и некоторых специальных методов для решения уравнений, систем уравнений и неравенств.

    реферат, добавлен 12.12.2013

  • Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.

    учебное пособие, добавлен 26.03.2014

  • Комбинированный метод как метод уточнения корней нелинейных алгебраических или трансцендентных уравнений. Нахождение интервала с существующим единственным корнем. Сохранение знаков на исследуемом отрезке. Сокращение интервалов путём половинного деления.

    отчет по практике, добавлен 14.10.2015

  • Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.

    доклад, добавлен 25.11.2010

  • Общая характеристика основных функций уравнения. Знакомство с графическим методом решения трансцендентных уравнений, анализ особенностей. График функции как множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов.

    статья, добавлен 17.02.2019

  • Рассчет по правилу умножения матриц коэффициентов новой матрицы. Решение системы линейных алгебраических уравнений тремя методами. Дифференциальное и интегральное исчисление функции одной переменной. Нахождение площади фигуры, ограниченной линиями.

    контрольная работа, добавлен 02.10.2012

  • Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.

    учебное пособие, добавлен 06.09.2017

  • Решение квадратных уравнений с параметром. Краткие сведения о жизни и деятельности Франсуа Виета. Разработка им тригонометрии и приложение ее к решению алгебраических уравнений. Введение буквенного исчисления, изучение не чисел, а действий над ними.

    практическая работа, добавлен 05.12.2010

  • Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.

    контрольная работа, добавлен 12.12.2012

  • Рассмотрение принципов решения систем линейных уравнений. Обзор матричного метода, описанного И.К.Ф. Гауссом. Анализ его достоинств. Способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем методом Г. Крамера.

    презентация, добавлен 23.12.2016

  • Понятия и свойства системы линейных алгебраических уравнений. Разложение определителя по элементам некоторого ряда. Правило Крамера. Метод Гаусса (последовательного исключения неизвестных). Обратная матрица и ее применение для решения линейных систем.

    курсовая работа, добавлен 31.12.2018

  • Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.

    курсовая работа, добавлен 10.06.2021

  • Рассмотрение решения линейных алгебраических систем с помощью метода Гаусса, постановки задачи, описания и сущности метода исключения, изучение точности метода, его преимуществ и недостатков, а также условий применимости и алгоритмов решения системы.

    контрольная работа, добавлен 27.02.2014

  • Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.

    курсовая работа, добавлен 06.04.2014

  • Решение уравнений высших степеней. Правила действий над мнимыми и комплексными числами. невозможность алгоритма общих уравнений Формула для нахождения корней. Различные методы решения алгебраических уравнений второй, третьей и четвертой степени.

    статья, добавлен 29.04.2021

  • Использование итерации в прикладной математике. Выполнение арифметических операций над переменными с плавающей точкой на компьютере. Преобразования матрицы чисел прямым и обратным ходом Гаусса. Решения линейных систем уравнений методом квадратного корня.

    лабораторная работа, добавлен 21.03.2014

  • Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.

    реферат, добавлен 12.09.2012

  • Постановка задачи с параметрами. Обобщение уравнений и неравенств с переменными. Решение уравнений и неравенств с одной переменной. Области допустимых значений параметров и область определения уравнения. Эффективные методы решения параметрических задач.

    лекция, добавлен 01.09.2017

  • Применение аналитических математических методов при моделировании процессов в науке и технике. Решение практических задач по баллистике методами Эйлера, Рунге-Кутта и Адамса. Учёт локальных особенностей искомой функции дифференциального уравнения.

    лекция, добавлен 21.09.2017

  • Способы решения уравнений, содержащих модуль. Использование геометрической интерпритации модуля для решения уравнений. Графики простейших функций, содержащих знак абсолютной величины. Доказательство теорем, определение, решение нестандартных уравнений.

    реферат, добавлен 06.03.2010

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.

    статья, добавлен 26.06.2016

  • Описание методов Зейделя, удобного для итерации, и Гаусса с выбором главного элемента по столбцу (схема частичного выбора) и по всей матрице (схема полного выбора) и их использование. Программы решений системы линейных уравнений данными методами.

    контрольная работа, добавлен 09.11.2010

  • Система, имеющая более чем одно решение (неопределенная). Метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида. Применение метода Крамера.

    презентация, добавлен 23.08.2016

  • Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.

    курсовая работа, добавлен 23.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.