Алгоритм проверки двух графов на изоморфизм
Понятие и сущность изоморфизма графов, их машинное представление. Характеристика и специфика матрицы смежности и инцинденций, специфика массива ребер. Пошаговая проверка на изоморфизм двух графов вручную. Реализация программы на языке программирования.
Подобные документы
Изучение принципов установления изоморфизма или изоморфного вложения между заданными структурами при решении комбинаторно-логических задач и оптимизационных на графах. Пример решения задач распознавания изоморфизма. Определение вершины в алгоритме.
лекция, добавлен 23.01.2017Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
курсовая работа, добавлен 13.09.2012Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
методичка, добавлен 24.03.2015Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.
учебное пособие, добавлен 15.10.2016Изучение базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения. Освоение компьютерных способов представления графов и алгоритмов машинной обработки графов. Программные продукты для анализа графов.
контрольная работа, добавлен 13.04.2012Определения теории графов. Реализация алгоритмов обработки графов в виде машинных процедур. Определение путей в графах. Математическое моделирование графов. Реализация алгоритма Флойда-Уоршелла без вычислительной системы. Оценка сложности алгоритма.
курсовая работа, добавлен 18.10.2024Понятие, свойства алгебраических операций. Изоморфизм групп, подгруппы. Смежные классы, фактор-группы, гомоморфизм и циклические группы. Определение графов, изоморфизм. Графы специального вида, деревья, циклы и планарность. Группы подстановок и тетраэдра.
курсовая работа, добавлен 29.06.2014Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.
курс лекций, добавлен 01.04.2016История возникновения теории графов. Основные понятия: ориентированный граф, петля, кратные ребра, гипердуги, подграфы. Способы представления графов в компьютере. Матрица смежности, инцидентность вершин и ребер, массивы дуг. Обзор задач теории графов.
курсовая работа, добавлен 14.06.2011Ориентированные графы как структуры с конечным множеством вершин и ребер. Симметричное отношение смежности для неориентированного графа. Матрица смежности. Проверка присутствия ребра при помощи матрицы смежности. Отношение эквивалентности на вершинах.
контрольная работа, добавлен 25.10.2013Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.
курсовая работа, добавлен 14.01.2016История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.
презентация, добавлен 28.02.2012Изучение понятия и разновидностей графов. Явление изоморфизма и гомеоморфизма. Пути и циклы. Дерево или произвольно-связный граф без циклов. Цикломатическое число и фундаментальные циклы. Независимые множества и покрытия. Алгоритм Дейкстры, Краскала.
шпаргалка, добавлен 08.09.2013- 14. Теория графов
Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.
контрольная работа, добавлен 03.04.2013 Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.
контрольная работа, добавлен 29.08.2010- 16. Теория графов
Главные концепции и содержание теории графов, ее место и значение в современной математической науке. Матрицы, ассоциированные с графами, принципы реализации различных операций с ними. Отличительные особенности и структура ациклических графов, их обходы.
контрольная работа, добавлен 08.02.2015 История возникновения графов, изучение их определения и свойств. Исследование роли графов в жизни. Применение теории графов при решении математических задач и их использование для изображения железных дорог и систем улиц города на географических картах.
презентация, добавлен 15.10.2016- 18. Графы
Изучение истории возникновения теории графов, основные понятия и виды графов. Теория графов в транспортных, коммуникационных и геоинформационных системах. Применение теории графов в медицине, биологии, физике, химии, астрономии, истории, искусстве.
научная работа, добавлен 03.05.2019 Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.
методичка, добавлен 15.10.2016Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.
учебное пособие, добавлен 15.10.2016Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.
контрольная работа, добавлен 27.03.2012- 22. Теория графов
Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.
контрольная работа, добавлен 18.12.2015 Основные определения графа, способы его задания. Представление сетей радиосвязи графами. Алгоритм выделения компонент сильной связности. Кратчайшие остовы и пути в нагруженном графе. Алгоритмы построения паросочетаний графов. Особенности раскраски графа.
учебное пособие, добавлен 15.10.2016- 24. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010 Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.
курсовая работа, добавлен 04.12.2023