Множители Лагранжа
Метод множителей Лагранжа позволяет отыскивать максимум или минимум функции при ограничениях-равенствах. Безусловный и условный экстремумы в задаче Лагранжа. Применение неопределенных множителей Лагранжа сводит задачу оптимизации с ограничениями к задаче.
Подобные документы
Уравнение общей теории относительности. Построение метрического тензора общей теории относительности по функции Лагранжа для малых скоростей в случае электромагнитного и гравитационного поля. Дополнительное уравнение движения материального тела.
статья, добавлен 26.03.2020- 77. Об одной нелокальной задаче для гиперболического уравнения с интегральными условиями первого рода
Анализ нелокальной задачи для гиперболического уравнения с интегральными условиями первого рода. Метод, позволяющий свести поставленную задачу к задаче с интегральным условием второго рода. Доказательство существования единственного обобщенного решения.
статья, добавлен 31.05.2013 Рассмотрение задачи оптимизации дробно-линейной функции с линейными ограничениями с точки зрения проективной геометрии. Характеристика задачи дробно-линейного программирования проективным преобразованием. Особенности максимизирования линейной функции.
статья, добавлен 21.01.2018Проведение исследования задачи основной нахождения интерполяционных коэффициентов Лагранжа при равномерном распределении узлов интерполяции. Добавление выражений в формулу базисного полинома и вынесение за знаки перемножения в числителе и знаменателе.
статья, добавлен 02.02.2019Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
курсовая работа, добавлен 12.12.2010Интерполяция как процесс нахождения многочлена не выше n-ой степени, ее содержание и предъявляемые требования, основные этапы и значение. Особенности интерполяционной формулы Лагранжа и Ньютона. Остаточный член интерполяции, методика его нахождения.
лекция, добавлен 08.09.2013Биография и научная деятельность Л. Лагранжа. Разработка учёным метрической системы мер, весов и нового календаря. Опубликование в Париже "Теории аналитических функций". Решение дифференциальных уравнений. Награждение графа орденом Почётного легиона.
реферат, добавлен 02.10.2019Характеристическое вычисление кривой. Основной анализ общего интеграла дифференциального уравнения. Главная особенность решения с разделяющимися переменными в математике. Проведение и обоснование задачи Коши. Подбор решения равенств методом Лагранжа.
практическая работа, добавлен 04.12.2014Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.
курсовая работа, добавлен 11.01.2015Визначення необхідних та достатніх умов для задоволення підмножиною числової площини для того, щоби кожна нарізно стала функція була поліноміальною. Перевірка hv-зв'язності об'єднання довільної сім'ї hv-зв'язних множин. Інтерполяційна теорема Лагранжа.
статья, добавлен 25.03.2016- 87. Формула Тейлора
Дослідження особливостей формули Тейлора із залишковим членом у формі Лагранжа. Аналіз тейлорової формули для многочлена. Розгляд розвитку основних елементарних функцій в ряд Маклорена. Вивчення процесу застосування почленного диференціювання рядів.
курсовая работа, добавлен 14.12.2015 Математическая постановка задач оптимального управления. Понятие функционала, его свойства и виды: Лагранжа, Майера, Больца. Понятие оптимальной ширины полосы пропускания системы. Основы вариационного исчисления. Условия относительного экстремума.
курс лекций, добавлен 19.09.2017- 89. Численные методы
Основные методы и алгоритмы вычислительной математики. Точные и приближенные числа, классификация погрешностей. Интерполирование функций, формула Лагранжа. Методы решения нелинейных уравнений, матричных уравнений и задач на собственные значения.
учебное пособие, добавлен 16.12.2016 Основной научный путь Э. Неттер – создание общей, абстрактной алгебры. Установление связи между янфинитезимальными симметриями и законами сохранения для соответствующей системы уравнений Эйлера-Лагранжа. Изучение сущности закона сохранения энергии.
презентация, добавлен 15.04.2014Эвристическое правило выбора функционального базиса в задаче построения функции регрессии. Выбор из множества возможных базисов такого, который доставляет минимум остаточной сумме квадратов, рассчитанной по проверочной выборке. Примеры эффективности.
статья, добавлен 27.11.2018Обчислення заданої функції для проміжних значень аргументів за формулами Лагранжа. Виконання інтерполяції функції з використанням вбудованих сплайн-функцій пакета, що складається з кусків поліномів. Побудова графіків вихідної та інтерпольованої функцій.
лабораторная работа, добавлен 22.07.2017Абсолютная и относительная погрешности, понятия значащих цифр приближенного числа. Оценка остаточного члена интерполяционного многочлена Лагранжа. Сущность разностной аппроксимации задачи Коши, описание правила Рунге практической оценки погрешности.
учебное пособие, добавлен 25.01.2019Структура языков Арнольда. Описание задачи Лагранжа об асимптотической угловой скорости вращающейся цепи. Сходимость марковских сферических средних. Задача о центрах вписанных окружностей треугольных орбит эллиптического бильярда. Теорема Стернберга.
диссертация, добавлен 12.01.2017Вычисление определенных интегралов с помощью квадратурных формул. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа. Общая формула Симпсона, простейшие квадратурные формулы. Квадратурная формула Чебышева.
контрольная работа, добавлен 21.12.2010Методы решения уравнений в частных производных, а также анализ полученных результатов, используемые основные понятия и методы. Параметры разностных схем, их структура и назначение. Вариационный принцип Лагранжа и Гамильтона, их сравнительное описание.
контрольная работа, добавлен 31.10.2014Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.
лекция, добавлен 29.09.2013Ознайомлення з формулами прямокутників і трапецій. Визначення сутності параболічного інтерполювання. Дослідження формули Сімпсона, яка використується для наближеного обчислення інтегралів. Характеристика особливостей інтерполяційної формули Лагранжа.
курсовая работа, добавлен 13.02.2016Доказывание теоремы признаков дифференцируемости обобщенной производной Шварца, в отличие от функций, дифференцируемых по Ньютону. Исследование существований левой и правой производных. Суть формулы Лагранжа конечных приращений классического анализа.
статья, добавлен 20.05.2018