Применение методов нейроинформатики для исследования мехатронных систем
Изучение принципа работы нейронной сети для распознавания образов на примере шумерского алфавита. Рассмотрение нейронной сети, которая должна точно распознавать идеальные векторы входа и с максимальной точностью воспроизводить зашумленные векторы.
Подобные документы
Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.
статья, добавлен 25.03.2019Исследование принципа работы с аналитической платформы Deductor для создания законченных прикладных решений. Определение входных и выходных переменных. Методы нормализации данных и обучения нейронной сети. Запуск программы и способы вывода решений.
контрольная работа, добавлен 18.10.2014Понятия, определения и проблемы, связанные с системами распознавания образов. Классификация методов, их применение для идентификации и прогнозирования. Роль и место распознавания образов в автоматизации управления сложными системами, кластерный анализ.
курсовая работа, добавлен 26.08.2010- 79. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 Сущность и структура простой рефлекторной нейронной сети, ее главные консонанты и функциональные особенности. Биологическая изменчивость и закономерности обучения. Классификация и формы данных сетей, типы используемой информации, применяемые модели.
контрольная работа, добавлен 27.11.2014Нейронные сети как распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Общая характеристика нейронной сети прогнозирования курса рубля, знакомство с основными особенностями.
контрольная работа, добавлен 31.05.2013Теория распознавания образов, основные понятия. Оптимизация алфавита классов и словаря признаков. Построение продукционной системы, диагностирующей миому матки и внутренний эндометриоз. Практическое применение продукционной модели, алгоритм сети Петри.
курсовая работа, добавлен 05.02.2016Понятие машинного зрения и распознавания образов, существующие разработки в области распознавания жестов глухонемых, основные требования и ограничения. Методы и этапы распознавания образов применительно к задаче распознавания языка жестов.
дипломная работа, добавлен 21.09.2018Особенность подготовки данных для обучения сети. Главный анализ формирования обучающих массивов в задаче. Вычисление суммы квадратичных отклонений выходов паутины от эталонов. Основная характеристика проведения результатов регрессионного анализа.
лабораторная работа, добавлен 14.01.2015Сеть Хопфилда: понятие, слои, граница емкости памяти, структурная схема. Пороговая передаточная функция. Обучение сети Хемминга, алгоритм функционирования. Весовые коэффициенты тормозящих синапсов. Определение состояния нейронов второго слоя сети.
статья, добавлен 17.07.2013Проектирование архитектуры программного комплекса на основе нейросетевых технологий для распознавания жестового языка инвалидов с нарушением слуха. Machine Learning: регрессионный методы интеллектуального анализа данных. Тестирование нейронной сети.
статья, добавлен 27.02.2019История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.
курсовая работа, добавлен 16.12.2016Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.
курсовая работа, добавлен 04.12.2012Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.
учебное пособие, добавлен 18.01.2014Фишинг как одна из главных причин взлома учетной записи в социальной сети. Развитие технологий машинного обучения - причина их активного применения в различных областях. Разработка алгоритма для получения набора данных для обучения нейронной сети.
статья, добавлен 09.05.2022Рассмотрение нейросетевых модификаций решения задач анализа изображений. Ознакомление со способами обучения нейронной сети для определения параметров прямой. Формирование виртуальной модели стенда. Характеристика процесса модификации детектора прямой.
статья, добавлен 19.01.2018Совершенствование технологий распознавания объектов природного происхождения с большой визуальной вариабельностью в промышленных системах технического зрения. Отбор информативных признаков, участвующих в классификации. Выбор топологии нейронной сети.
автореферат, добавлен 02.05.2018Понятие "распознавание образов". Особенности разработки математической модели распознавания образов в кибернетике. Общая характеристика задач распознавания образов и их основные типы. Методы и принципы, применяемые в этой сфере вычислительной техники.
контрольная работа, добавлен 30.07.2018Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Особенности использования нейросетевых технологий для подавления шума в информационных сигналах. Настройка структуры нейронной сети. Оптимизация весовых коэффициентов, пороговых значений функции активации. Эффективность автоматически сгенерированной сети.
статья, добавлен 19.01.2018Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.
статья, добавлен 30.06.2020Разработан и описан алгоритм процесса конвертирования поступающих в программный комплекс исполняемых файлов в черно-белые изображения, позволяющий сформировать собственный набор данных для обучения нейронной сети на основе полученных изображений.
статья, добавлен 16.05.2022Топологическая модель быстрой нейронной сети. Применение гибридных быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов. Структурный синтез быстрых нейронных сетей. Модели и концепции эволюционной кибернетики.
статья, добавлен 29.05.2017Публикация - один из самых популярных форматов общения в социальной сети. Особенности векторного представления слов в двумерном пространстве. Архитектура рекуррентной нейронной сети. Модерация текста - инструмент борьбы с токсичностью в Интернете.
дипломная работа, добавлен 02.09.2018Задачи идентификации неоднородностей на цифровых изображениях. Предварительная обработка снимков с использованием полосовых частотных фильтров. Преобразование изображений в псевдоцвета. Принципы нейросетевой технологии для распознавания текстуры снимков.
статья, добавлен 02.03.2018