Дифференциальные исчисления

Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.

Подобные документы

  • Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.

    курс лекций, добавлен 22.01.2013

  • Неопределённый интеграл как совокупность всех первообразных данной функции. Основные приемы вычисления. Интегрирование дробно-рациональных и тригонометрических функций. Независимость от вида переменной. Интегрирование, содержащий квадратный трехчлен.

    презентация, добавлен 30.01.2015

  • Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.

    курсовая работа, добавлен 15.03.2013

  • Рассмотрение сведения интеграла путём выделения полного квадрата в подкоренном выражении в зависимости от знака. Особенности разбиения исходного интеграла на два более простых. Исследование основных методов сведения к интегралу от рациональной функции.

    задача, добавлен 22.04.2015

  • Краткая биография М.В. Остроградского. Основные труды ученого в сфере математического анализа и механики. Характеристика основных научных достижений М.В. Остроградского в области исследования интегрирования рациональных функций и уравнений динамики.

    презентация, добавлен 07.12.2015

  • Основатели символического (операционного) исчисления. Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Дифференцирование изображения. Интегрирование оригинала и изображения. Отыскание оригинала по изображению.

    курсовая работа, добавлен 27.02.2020

  • Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.

    контрольная работа, добавлен 04.11.2012

  • Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.

    реферат, добавлен 17.01.2011

  • Определение понятия интеграла. Ознакомление с историей появления новой ветви математики - интегрального исчисления. Рассмотрение особенностей отыскивания функций по их производным. Особенности понятий бесконечности, движения и функциональной зависимости.

    презентация, добавлен 11.05.2016

  • Первообразная функция, теорема о первообразных. Неопределенный интеграл, свойства, таблица. Замена переменной, интегрирование по частям. Интегрирование дробей, выражений, содержащих тригонометрические функции. Определенный интеграл, геометрический смысл.

    реферат, добавлен 12.03.2010

  • Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.

    статья, добавлен 09.05.2021

  • Решение задач на определение неопределенного интеграла, площади фигуры, образованной линиями y=4 и y=x2, порядка и границ интегрирования, общего интеграла дифференциального уравнения по признаку Лейбница. Применение признака Даламбера и расчет ряда Фурье.

    контрольная работа, добавлен 03.03.2014

  • Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.

    эссе, добавлен 30.06.2016

  • Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.

    лекция, добавлен 17.01.2014

  • Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.

    курсовая работа, добавлен 10.07.2017

  • Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.

    дипломная работа, добавлен 16.01.2014

  • Разработка приближенных методов вычисления определенных интегралов. Классические методы численного интегрирования по квадратурным формулам - наиболее распространенные методы вычисления одномерных определенных интегралов. Сущность метода прямоугольников.

    курсовая работа, добавлен 20.05.2013

  • Определение несобственного интеграла с бесконечными пределами. Оценка признаков сравнения функций. Мера ограниченной замкнутой области. Интегралы от неограниченных функций. Интегрирование неравенств фигуры и точки. Изучение свойств двойного интеграла.

    лекция, добавлен 17.01.2014

  • Введение понятия урчуктных (разрывных) функций в дифференциальное исчисление. Нули разрывной функции. Совокупность разрывных функций. Касательные с угловыми коэффициентами. Классическая теорема Ролля. Расчет производной по классической теореме Ферма.

    статья, добавлен 20.05.2018

  • Особенность обобщения теоремы о вложении Харди-Литтлвуда для некоторых классов функций, интегрируемых с весом на отрезке. Применение для внутреннего интеграла неравенства Гельдера. Введение средних непрерывных из-за непрерывности интегрирования Лебега.

    статья, добавлен 30.10.2016

  • Общие методы вывода квадратурных формул. Процесс вычисления определенного интеграла. Рассмотрения метода интегрирования Гаусса с плавающими узлами. Математические квадратуры в специальных случаях. Вычисление несобственных интегралов второго рода.

    учебное пособие, добавлен 13.09.2015

  • Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.

    курсовая работа, добавлен 23.10.2017

  • Основные тригонометрические тождества: формулы привидения, сложения, двойного и половинного угла, преобразования сумм тригонометрических функций в произведение. Графики и свойства обратных тригонометрических функций. Методы решения уравнений, неравенств.

    контрольная работа, добавлен 16.06.2010

  • Определение синуса, косинуса, тангенса и котангенса действительного числа. Основные свойства и графики тригонометрических функций. Формирование графической симметрии относительно начала координат. Характеристика множества значений переменной величины.

    лекция, добавлен 12.10.2015

  • Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.

    презентация, добавлен 02.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.