Скалярное произведение векторов
Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.
Подобные документы
Анализ аналитического определения обобщенного скалярного произведения векторов в данном n-мерном (векторном) пространстве. Изучение эквивалентности аналитического и аксиоматического определения скалярного произведения и всех рассматриваемых пространств.
дипломная работа, добавлен 10.04.2015Евклидово пространство – линейное пространство с некоторым образом введенной операцией "скалярного произведения". Неравенство Коши–Буняковского. Ортогональные и ортонормированные системы векторов. Ортогональное дополнение к линейному подпространству.
контрольная работа, добавлен 01.07.2012Линейные операции над векторами. Действия над математическими величинами, заданными своими координатами. Свойства скалярного и смешанного произведения векторов. Определение векторного произведения одноименных и разноименных ортов. Признак компланарности.
курс лекций, добавлен 10.11.2013Определение и геометрический смысл смешанного произведения векторов. Формулирование необходимого и достаточного условия их компланарности. Рассмотрение уравнений линии на плоскости и прямой с угловым коэффициентом, векторного и канонического уравнений.
лекция, добавлен 26.01.2014Вектор как одно из фундаментальных понятий современной математики, тензор - его обобщение. Векторы и их применение в жизни человека. Использование скалярного произведения в элементарных и абстрактных областях математики, физики и прикладных наук.
статья, добавлен 27.02.2019Место Рене Декарта в истории математики. Научное описание прямоугольной системы координат в работе "Рассуждение о методе". Рассмотрение связи геометрии и алгебры с помощью скалярного произведения векторов и угла между ними в научных трудах Декарта.
статья, добавлен 27.01.2019Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
презентация, добавлен 01.09.2015Анализ способов определения скалярного произведения. Характеристика ортогональных векторов. Линейный оператор как обобщение линейной числовой функции на случай более общего множества аргументов и значений. Знакомство с примерами евклидовых пространств.
контрольная работа, добавлен 12.11.2013- 34. Скалярное поле
Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.
лекция, добавлен 08.05.2015 Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.
контрольная работа, добавлен 24.09.2014Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.
курс лекций, добавлен 29.05.2014Особенность векторного произведения коллинеарных векторов. Характеристика создания градиентов в координатах. Анализ результата раскрытия определителя. Геометрические и алгебраические свойства смешанного творения. Суть циклической перестановки множителей.
реферат, добавлен 23.10.2014Линейная комбинация векторов - сумма произведений направленных отрезков на некоторые вещественные числа. Основные неравенства, которые возникают из при сложении векторов. Абсолютная величина векторного отрезка - расстояние между его началом и концом.
лекция, добавлен 06.09.2017Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Скалярное произведение и ортогональность. Экспоненты мнимого аргумента, а также среднеквадратичное отклонение. Образование полной системы попарно ортогональных функций. Комплексная функция вещественной переменной. Вычисление коэффициентов Фурье.
контрольная работа, добавлен 22.04.2015Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.
курсовая работа, добавлен 30.11.2012Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.
курс лекций, добавлен 10.09.2016Условия ортогональности линейного преобразования. Независимость ортонормированной системы векторов. Стандартное евклидово пространство и ортогональные матрицы. Геометрический смысл собственного преобразования А. Доказательства леммы. Индукция векторов.
лекция, добавлен 30.04.2014Понятие линейной комбинации векторов. Выражение члена с номером через остальные слагаемые. Свойства линейнозависимой системы векторов. Геометрический смысл линейной зависимости, коллинеарности и компланарности. Выражение переменной через другие значения.
презентация, добавлен 21.09.2013Определители матриц. Векторное произведение векторов, его свойства. Линейные преобразования пространства. Прямая в пространстве. Виды уравнений прямой. Гипербола и парабола. Конусы и цилиндры. Непрерывные функции и их свойства. Производная и дифференциал.
шпаргалка, добавлен 11.05.2010Связанные векторы и свободные векторы. Скалярное произведение ковектора. Умножение на числа и сложение тензоров. Поднятие и опускание индексов. Тензорные поля в декартовых координатах. Градиент, дивергенция и ротор. Главная идея криволинейных координат.
учебное пособие, добавлен 25.11.2013Условия и особенности применения элементарной алгебры и тригонометрии в ряде случаев при решении задач на вычисление применение векторов. Методика составления плана решения, а также требования к данному процессу. Выделение неколлинеарных векторов.
реферат, добавлен 18.06.2015Определение коллинеарности векторов. Вычисление координат точки пересечения медиан и высот треугольника. Составление уравнения прямой, проходящей через его вершину параллельно стороне. Расчет площади основания пирамиды, используя произведения векторов.
контрольная работа, добавлен 17.11.2017Использование математического аппарата для описания физических процессов. Геометрическая интерпретация векторов. Правило треугольника и параллелограмма. Свойства скалярного и векторного произведения. Преобразование координат при повороте системы отсчёта.
учебное пособие, добавлен 19.03.2014Исследование достижений Рене Декарта - французского математика и философа. Определение и анализ сущности вектора – направленного отрезка прямой и геометрической абстракции векторной величины. Ознакомление с особенностями декартовой системы координат.
презентация, добавлен 03.05.2016