Использование генетических алгоритмов для обучения нейронных сетей
Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
Подобные документы
Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Анализ градиента для некоторых случаев нейронных сетей с вейвлет-разложением целевого вектора – нового типа нейронной сети, специализированного на распознавании речи и преобразовании сигнала, позволяющего ускорить обучение по сравнению с перцептроном.
статья, добавлен 28.05.2017Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.
статья, добавлен 01.03.2017Характеристики нейронных многослойных сетей. Математические эквиваленты нейрофизиологических понятий параметрической и топологической пластичности. Связь степени параметрической пластичности нейронной сети с числом независимо распознаваемых образов.
статья, добавлен 17.01.2018Разработка и внедрение модели кредитного скоринга с использованием нейронных сетей. Модель будет прогнозировать платежеспособность клиентов банка. Описание реализации. Предобработка входных данных. Процедура обучения нейронной сети, тестирование.
дипломная работа, добавлен 30.06.2017- 56. Нейрокомпьютеры
Понятие и принцип работы нейронных сетей. Типы нейронов и их функциональные особенности: биологические и искусственные. Базовые архитектуры нейронных сетей, их структура и элементы. Этапы программирования средств аппаратной поддержки нейровычислений.
контрольная работа, добавлен 14.10.2013 - 57. Нейронные сети
Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.
реферат, добавлен 15.03.2009 Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.
статья, добавлен 15.08.2020Моделирование поведения живых существ в процессе исследований в области искусственного интеллекта. Особенности искусственного нейрона и структура нейронных сетей. Осуществление диагностики с помощью использования пакета Statistica Neural Networks.
статья, добавлен 29.01.2016Топологии нейронной сети: биологический нейрон, функции активации, закономерности обучения. Существующие архитектуры и их сравнительная характеристика. Многослойный перцептрон нейронной сети, особенности ее использования для динамических систем.
отчет по практике, добавлен 18.02.2019- 61. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Разработка новых методов решения проблемы предсказывания (определения) цен акций на фондовом рынке с помощью технологии датамайнинга и машинного обучения, а именно нейронных сетей как инструмента имитации агента, торгующего на фондовом или другом рынке.
дипломная работа, добавлен 26.08.2016Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.
статья, добавлен 17.03.2021Разработка модели обнаружения злоумышленника в информационной системе. Анализ результатов обучения и реализации нейронных сетей на основе персептрона и линейных нейронных сетей в пакете Matlab. Выявление аномального поведения пользователя в системе.
статья, добавлен 30.04.2018Применение искусственных нейронных сетей. Выработка алгоритма синтеза контроллера, формирующего порог, который обеспечит заданные выходные реакции объекта управления (устройства), с использованием математического аппарата искусственных нейронных сетей.
статья, добавлен 02.04.2019Исследование содержания и принципы разрешения задачи разработки интеллектуальной системы распознавания текста на фотографиях и видеокадрах сложных графических сцен. Методика и этапы обнаружения и локализации текстовых областей с помощью нейронных сетей.
статья, добавлен 23.02.2016Структура искусственной нейронной сети и принципы ее работы. Нейросетевая классификация. Создание программы, которая используя технологии нейронных сетей, сможет распознавать рукописные буквы. Центрирование изображения. Пример работы с приложениями.
статья, добавлен 30.05.2013Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.
книга, добавлен 18.01.2011Проблема создания искусственного интеллекта. Имитационные теории моделирования. Развитие нейронных сетей. Разработка семантических алгоритмов. Технологии самообучающихся нейронных сетей. Социально-этические аспекты создания искусственного интеллекта.
реферат, добавлен 28.06.2011Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.
статья, добавлен 15.07.2020Этапы становления и развития нейронных сетей. Головной мозг, нейронные сети и компьютеры. Программные и аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей. Способы распознавания образов предметов.
реферат, добавлен 17.05.2013Разработка искусственных нейронных сетей и машинное обучение как перспективные направления информационных технологий. Преимущества и недостатки, способность нейросетей решать задачи, которые невозможно решить классическими программными алгоритмами.
статья, добавлен 20.02.2019- 73. Нейронные сети
Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.
реферат, добавлен 09.06.2016 Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей. Возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 28.03.2022Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей; возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 10.04.2023