Разработка веб-приложения для масштабирования растровых изображений с использованием нейронных сетей

Процесс масштабирования (увеличения) изображения с минимальной потерей в качестве. Анализ способа соединения классического метода масштабирования и метода машинного обучения. Алгоритм работы нейронной сети, разработанной для масштабирования изображений.

Подобные документы

  • Алгоритм формирования изображения подкожного слоя, с использованием многоспектрального метода. Методы, уменьшающие искажающее влияние изменения характеристик кожи на формирование изображения без соблюдения жестких требований к точности выбора длин волн.

    статья, добавлен 30.05.2017

  • Изучение роли программного обеспечения промежуточного уровня в распределенных системах. Технологии масштабирования. Характеристика моделей промежуточного уровня. Различные виды прозрачности. Построение гибких распределенных систем решающим фактором.

    контрольная работа, добавлен 09.04.2018

  • Способы организации масштабирования системы хранения хронологических данных. Сбор и сортировка данных. Проблема обеспечения способности к масштабированию всей информационной системы в целом на достаточном уровне. Возможность добавления новых данных.

    статья, добавлен 29.04.2017

  • Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.

    лекция, добавлен 21.09.2017

  • Алгоритмы компьютерной обработки изображений, позволяющие существенно повысить скорость проведения диагностики сахарного диабета на основе дерматоглифического исследования. Элементы программного обеспечения системы. Результат обучения нейронной сети.

    автореферат, добавлен 02.07.2018

  • Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.

    статья, добавлен 26.04.2019

  • Анализ основных этапов обработки медицинских радиологических изображений. Сущность алгоритма Канни и результаты его работы на реальных данных. Особенности метода визуализации на основе послойного наложения изображений, перспективы его применения.

    статья, добавлен 22.03.2016

  • Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.

    статья, добавлен 29.05.2017

  • Анализ вопросов использования нейронной сети для распознавания фигур технического анализа. Сравнение способов формирования входных образов. Конгломерат нейронных сетей для распознавания фигур технического анализа. Трактовка выходов нейронной сети.

    статья, добавлен 27.04.2017

  • Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.

    лабораторная работа, добавлен 14.12.2019

  • Процесс формирования параметров изменяемого пользовательского интерфейса. Возможность применения методов нейронных сетей для обработки характеристик и классификации категорий пользовательских интерфейсов; структура искусственной нейронной сети.

    статья, добавлен 08.03.2019

  • Ознакомление с процессом моделирования алгоритма и анализом результатов программными средствами. Определение цели операции бинаризации. Изучение процесса обработки изображения методом квантилей. Рассмотрение пирамидального метода сегментации изображений.

    дипломная работа, добавлен 07.08.2018

  • Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.

    дипломная работа, добавлен 07.12.2019

  • Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.

    статья, добавлен 16.05.2022

  • Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.

    реферат, добавлен 20.02.2009

  • Использование метода фильтрации, называемого маской Лапласа, для улучшения цифровых изображений. Программное обеспечение для этих экспериментов и основные требования к нему. Выбор и настройка параметров маски Лапласа для цифровой обработки изображений.

    творческая работа, добавлен 07.03.2019

  • Анализ существующих систем в области идентификации изображений, их применение. Характеристика функциональной структуры подсистемы. Анализ выбора нейронной сети, моделирование подсистемы идентификации. Разработка базы сигналов и создание нейронной сети.

    курсовая работа, добавлен 02.08.2015

  • Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.

    контрольная работа, добавлен 06.12.2015

  • Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.

    дипломная работа, добавлен 19.11.2015

  • Обзор совокупности аппаратных и программных средств, предназначенных для ввода, преобразования и вывода графических изображений с помощью компьютера. Исследование основных особенностей хранения изображения в векторных и растровых графических редакторах.

    презентация, добавлен 23.05.2012

  • Исследование особенностей обработки растровых и векторных изображений. Разрешающая способность и масштабирование изображений. Цветовые модели, системы соответствия цветов и режимы. Расчет объема требуемой видеопамяти. Форматы графических изображений.

    лекция, добавлен 10.09.2015

  • Определение основной задачи распознавания образов в преобразовании уже имеющегося изображения на формально понятный язык символов. Растровые представления изображений. Моделирование изображений растра. Параметрический алгоритм рисования линии.

    лекция, добавлен 26.09.2017

  • Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.

    статья, добавлен 17.07.2013

  • Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.

    курсовая работа, добавлен 26.06.2011

  • Возможность объединения подходов к представлению данных – фрактального и вейвлет-анализа с использованием принципа цветовой оппонентности для построения нового способа обработки и сжатия изображений. Кратномасштабная иерархия элементов; цветовые каналы.

    статья, добавлен 28.01.2020

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.