Матрицы в теории графов
Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
Подобные документы
Бесперспективность проверки существования нераскрашиваемого графа путем полного перебора. Задача построения однодневного расписания учебных занятий. Проверка существования гармонической раскраски у каждого графа. Применение рекурсивной процедуры AddSplit.
статья, добавлен 21.06.2018- 77. Блочные матрицы
Виды блочных матриц и операции над ними, их отличие от обычных. Сложение, умножение, кронекеровские произведение и сумма. Применение формулы Фробениуса. Алгоритм нахождения полуобратной матрицы. Нахождение обратной к матрице и информация о "возмущении".
курсовая работа, добавлен 18.05.2013 Глобальные структуры алгебраических байесовских сетей. Описание схемы алгоритма равновероятного синтеза минимального графа смежности. Понятие и сущность алгебраических байесовских сетей. Выявление основных возможностей реализации минимальных графов.
статья, добавлен 15.01.2019- 79. Теория графов
Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.
задача, добавлен 11.09.2012 Формулировка и решение задачи об оптимальном размещении компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Использование алгоритма Форда-Бэллмана для решения задачи. Построение матрицы смежности.
курсовая работа, добавлен 20.01.2016Понятие индивидуальных предпочтений и удовлетворяющих ряд свойств, описываемых бинарными отношениями. Очерк развития ординального подхода в рамках математической логики. Анализ специальных классов линейного порядка. Свойства матриц смежности графов.
лекция, добавлен 29.09.2013Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.
книга, добавлен 25.11.2013Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.
курсовая работа, добавлен 23.04.2011Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.
учебное пособие, добавлен 15.04.2014Изучение и создание алгоритма решения задачи о выделении минимального остовного дерева. Понятие теории графов. Характеристика алгоритма Прима, Краскала, Борувки. Определение каркаса, алгоритм выделения минимального остовного дерева нагруженного графа.
курсовая работа, добавлен 03.11.2015Основные определения теории графов. Матрицы смежности и инцидентности. Вершинная связность и реберная вязность. Теорема Менгера и выделение k непересекающихся остовных деревьев 2k–реберно связном графе. Построение k непересекающихся остовных деревьев.
дипломная работа, добавлен 26.02.2020Применение теории графов в современной вычислительной технике и кибернетике. Матрица смежности и инциденций вершин. Задание множества вершин, достижимых из вершины v, с использованием линейного однонаправленного списка. Фундаментальные циклы графа.
контрольная работа, добавлен 24.04.2011Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Представление структуры объекта в виде множеств. Исследование отношений на рефлексивность, транзитивность, симметричность. Определение логических взаимосвязей между множествами объекта. Представление структуры управления в виде графов, матрицы смежности.
курсовая работа, добавлен 07.06.2010- 90. Теории множеств
Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.
лекция, добавлен 29.09.2013 Элементы теории графов. Общая схема метода динамического программирования. Построение сетевого графика технологического комплекса. Критические пути и нахождение времени завершения комплекса работ. Задача о построении минимального остовного дерева.
учебное пособие, добавлен 01.04.2014Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
лекция, добавлен 19.06.2014Получение Л. Эйлером критерия существования обхода ребер графа при решении задачи о Кенигсбергских мостах. Формулировка теоремы для связных ориентированных и неориентированных графов. Пример дерева перебора вариантов. Фундаментальное множество циклов.
презентация, добавлен 09.09.2017Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.
контрольная работа, добавлен 29.01.2014Способы задания множеств и бинарных отношений. Основные логические операции. Представление булевых функций. Понятия логики предикатов. Описание теории графов, конечных автоматов, языков и элементов кодирования. Расчет максимального потока в сетях.
учебное пособие, добавлен 13.01.2015- 96. Алгебра матриц
Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.
методичка, добавлен 19.09.2015 - 97. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.
презентация, добавлен 26.07.2015Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.
контрольная работа, добавлен 07.11.2013- 100. Раскраска графов
Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.
доклад, добавлен 29.12.2014