Теория множеств
Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.
Подобные документы
Логические связи и отношения, лежащие в основе логического вывода, с использованием языка математики. Объединение множеств. Аксиома Дедекинда. Понятие супремума. Обратная функция. Геометрическая интерпретация. Монотонная последовательность чисел.
контрольная работа, добавлен 12.10.2013Рассмотрение природы интеграла. Особенности определения первообразной, дифференциала функции и основы специального способа выбора точек на частных отрезках разбиения при помощи интеграла Ньютона-Лейбница. Вычисление функции в интегральной сумме Римана.
статья, добавлен 25.10.2016Понятие вероятности и зарождение науки о закономерности случайных явлений. Достоверное, невозможное и случайное событие как первичное понятие теории вероятностей. Комбинаторные конфигурации, используемые для формулировки и решения комбинаторных задач.
реферат, добавлен 06.01.2015Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.
лабораторная работа, добавлен 28.05.2015Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.
презентация, добавлен 19.09.2017Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.
лекция, добавлен 26.09.2017Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.
реферат, добавлен 22.05.2017Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.
презентация, добавлен 26.10.2013Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.
лекция, добавлен 29.09.2014Понятия сходимости и аппроксимации. Топологические векторные пространства, банаховы пространства. База окрестности в точке. Теория двойственности, нормирование пространства. Теорема Крейна-Шмульяна. Понятие о топологии, порожденной семейством множеств.
методичка, добавлен 08.09.2015Разработана математическая модель здания на основании теории множеств. Определены параметры дефектов для каждого конструктивного элемента и их соответствующие предельно-допустимые значения, проведен анализ технического состояния конструктивного элемента.
статья, добавлен 20.11.2020Алгебра как часть вычислительного анализа и теории функций. Теория конечных групп подстановок. Представители Русской алгебраической школы. Научные исследований по математике Отто Шмидта, гипотеза о происхождении Земли. Труды по теории множеств Новикова.
реферат, добавлен 14.11.2014Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.
презентация, добавлен 29.10.2017Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.
статья, добавлен 26.04.2017Представление структуры объекта в виде множеств. Исследование отношений на рефлексивность, транзитивность, симметричность. Определение логических взаимосвязей между множествами объекта. Представление структуры управления в виде графов, матрицы смежности.
курсовая работа, добавлен 07.06.2010Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.
методичка, добавлен 15.10.2016Характеристическое свойство - признак, которым обладает каждый элемент, принадлежащий множеству. Круги Эйлера - особые чертежи, при помощи которых наглядно представляют отношения между множествами. Изображение декартова произведения при помощи графа.
презентация, добавлен 20.12.2015Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.
статья, добавлен 11.02.2021- 119. Теория катастроф
Определение теории катастроф. Ее задача и область применения. 7 элементарных катастроф по Тому: катастрофы типа "Складка", "Сборка", "Ласточкин хвост", "Бабочка". Потенциальные функции с двумя активными переменными. Классификация катастроф по Арнольду.
презентация, добавлен 30.09.2019 Подходы к определению алгоритма и их эквивалентность. Основные понятия булевых функций, декартово произведение и степень произвольного множества. Теорема о совершенной ДНФ. Виды логических и формальных исчислений. Характеристика предикат и квантор.
контрольная работа, добавлен 22.02.2010- 121. Алгебра множеств
Основное правило комбинаторики. Теория булевых функций, булева алгебра характеристических векторов и высказываний. Определение и способ задания булевых функций. Дизъюнктивные и конъюнктивные нормальные формы. Эйлеровы графы, сети, пути в орграфах.
курс лекций, добавлен 18.03.2010 Определение функции и графика функции. Область определения и область значений функции, ее нули и экстремумы. Общая схема исследования функций: признаки возрастания и убывания, критические точки. Место и роль математики в менеджменте и экономике.
реферат, добавлен 23.04.2011Разложение подстановок в произведение циклов с непересекающимися орбитами. Исследование наборов состоящих из одного и того же количества элементов, отличающихся только порядком следования элементов. Рассмотрение симметрической группы третьей степени.
курсовая работа, добавлен 23.04.2024Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
контрольная работа, добавлен 25.12.2011- 125. Основы комбинаторики
Понятие о науке "Комбинаторика". Комбинаторика как раздел математики, изучающий размещения, перестановки, сочетания. Комбинаторика в различных областях жизнедеятельности: в литературе, на шахматной доске и в играх. Фигурные числа, старинные задачи.
реферат, добавлен 13.05.2019