О продолжении дифференцируемых функций с отрезка их монотонности и неравенства типа Колмогорова

Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.

Подобные документы

  • Рассмотрение математического описания марковского процесса с дискретными состояниями и непрерывным временем на примере случайного процесса. Формулировка правила составления дифференциальных уравнений Колмогорова. Изучение процессов гибели и размножения.

    реферат, добавлен 28.04.2012

  • Изучение единственной абсолютно монотонной функции наилучшего равномерного приближения на отрезке. Использование специального критерия единственности наилучшего приближения клином. Применение теоремы для других конусов, состоящих из непрерывных функций.

    статья, добавлен 07.08.2020

  • Исследование концепции обучения учеников нахождению возрастания и убывания функции по ее графику, а так же по графику её производной. Сравнительная таблица нахождения промежутков монотонности по графикам функции или её производной. Примеры решения задач.

    статья, добавлен 19.05.2016

  • Решение проблемы исследования элементарных функций на монотонность и выпуклость графика без использования производной. Реализация и возможности применения метода обобщения при нахождении промежутков монотонности рациональных и алгебраических функций.

    статья, добавлен 07.12.2016

  • Дослідження задачі про нерівності типу Колмогорова для похідних дробового порядку функцій однієї та багатьох змінних, порівняння точних констант у нерівностях для норм "проміжних" похідних періодичних і неперіодичних функцій багатьох змінних у просторах.

    автореферат, добавлен 30.08.2014

  • Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.

    учебное пособие, добавлен 08.12.2013

  • Связь корреляционно-иммунных булевых функций с кодами и ортогональными массивами. Линейные и квазилинейные переменные. Оптимизация неравенства Зигенталера для каждой отдельной переменной. Теорема для регулярных функций типа теоремы Симона-Вегенера.

    научная работа, добавлен 15.09.2012

  • Знаходження непокращуваних нерівностей для похідних функцій зі спеціальних функціональних класів, розв'язок задачі про наближення необмежених операторів лінійними операторами. Узагальнена задача Колмогорова про існування елемента нормованого простору.

    автореферат, добавлен 20.07.2015

  • Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.

    статья, добавлен 29.04.2018

  • Изучение свойств показательной и логарифмической функций. Развитие интереса к математике; формирование навыков самостоятельной деятельности на уроке. Реализация творческого мышления при решении показательных и логарифмических уравнений и неравенств.

    презентация, добавлен 24.10.2012

  • Анализ работ А.Н. Колмогорова и Н.В. Смирнова, посвященных односторонним и двухсторонним критериям согласия и однородности. Рассмотрение типовых ошибок при применении перечисленных критериев для проверки нормальности распределения результатов измерений.

    статья, добавлен 14.05.2017

  • Использование алгоритма Брезенхема растровыми устройствами с ЭЛТ. Выбор оптимальных растровых координат для представления отрезка. Изучение основной идеи алгоритма Брезенхема. Вычисление погрешности при представлении отрезка дискретными пикселами.

    реферат, добавлен 19.05.2014

  • Получение необходимых и достаточных условий справедливости интегрально-дифференциального неравенства. Особенности использования методов исследования вариационных задач, разработанные Пермским семинаром по функционально-дифференциальным уравнениям.

    статья, добавлен 26.04.2019

  • Использование компьютера на уроках математики. Введение понятия производная ее геометрический смысл, касательная к графику непрерывной функции. Правило Лопиталя, алгоритм применения производной для нахождения интервалов монотонности и экстремумов.

    контрольная работа, добавлен 20.02.2020

  • Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.

    контрольная работа, добавлен 22.04.2012

  • Описание построения некоторых функциональных пространств дифференцируемых функций многих переменных и построенных весовых пространств. Построение усредняющей функции и основного тождества. Нахождение вектора с целыми неотрицательными координатами.

    статья, добавлен 21.06.2018

  • Расстояние между точками. Середина отрезка, центр тяжести многоугольника. Задача деления заданного отрезка в любом заданном отношении. Расстояния между точками на окружности. Скалярное произведение векторов. Длина векторного произведения векторов.

    контрольная работа, добавлен 05.12.2018

  • Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.

    учебное пособие, добавлен 10.04.2015

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

  • Теорема Вейерштрасса, исследование свойств функции, непрерывной на заданном отрезке. Схема и основные этапы нахождения наибольшего и наименьшего значения функции на отрезке. Расчет критических точек, в которых производная равна нулю или не существует.

    презентация, добавлен 21.09.2013

  • Строгое доказательство трансцендентности числа Pi, выведенное в 1882 году немецким математиком Ф. Линдеманом. Построение отрезка, равного числу Pi, исходя из радиуса окружности. Среднее геометрическое сторон прямоугольника, решение квадратуры круга.

    статья, добавлен 15.03.2015

  • Изучение способов решения квадратного неравенства: аналитического и графического. Исследование неравенств с одной переменной. Рассмотрение особенностей неравенств, содержащих знак модуля. Определение количества целочисленных решений неравенства.

    презентация, добавлен 15.03.2015

  • Определение предела функции по Коши, понятие непрерывности в точке. Множества Коши в Евклидовом пространстве. Решение неравенства Коши для бесконечных последовательностей. Неравенства треугольника. Комплексные пространства со скалярным произведением.

    курсовая работа, добавлен 09.12.2010

  • Ключевая роль неравенств в курсе математики средней школы. Решение неравенств с использованием свойств функции. Линейные, квадратичные, иррациональные, показательные и логарифмические неравенства. Некоторые лжепреобразования при решении неравенств.

    дипломная работа, добавлен 09.11.2017

  • Решение тригонометрического неравенства с помощью составленного алгоритмического предписания. Определение нулей и точек разрыва функции в левой части неравенства. Расстановка на единичной окружности точек, являющихся представителями всех найденных чисел.

    презентация, добавлен 15.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.