Дифференциальная геометрия и топология

Понятия общей топологии. Многообразия и касательные вектора. Тензоры: первые определения и свойства. Обычное частное дифференцирование. Сравнение касательных векторов в разных точках. Интегрирование дифференциальных форм. Расчет ковариантной производной.

Подобные документы

  • Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.

    курсовая работа, добавлен 04.12.2018

  • Операции над множествами. Свойства функции одной переменной. Основные теоремы о пределах. Производная функции одной переменной. Дифференциал функции. Применение производной. Действия над комплексными числами. Интегрирование тригонометрических выражений.

    курс лекций, добавлен 28.06.2014

  • Топологическое пространство как основной объект изучения топологии, его содержание и основные категории измерения. Этапы становления и развития топологии как научного направления. Влияние аксиом отделимости на свойства топологических пространств.

    реферат, добавлен 24.12.2010

  • Дифференцируемая и монотонная функция на промежутке Х. Дифференцирование функции с производной, не равной нулю, при условии что производная обратной функции равна обратной величине производной исходной функции. Приращение независимой переменной y.

    презентация, добавлен 21.09.2013

  • Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.

    учебное пособие, добавлен 27.10.2013

  • Расчет формулы преобразования Лапласа для алгебраизации дифференциальных уравнений, ее свойства: линейность, дифференцирование оригинала, свертка, запаздывание, сдвиг и масштабирование. Расчет функций Хевисайда и Дирака и применение теоремы о вычетах.

    презентация, добавлен 20.02.2014

  • Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.

    книга, добавлен 28.12.2013

  • Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.

    презентация, добавлен 23.10.2020

  • Понятие производной, геометрический и физический смысл. Правила дифференцирования. Производные высших порядков. Приложение производной при исследование функции. Возрастание, убывание, экстремум функции. Применение производной к исследованию функции.

    учебное пособие, добавлен 06.06.2010

  • Понятие и равенство векторов. Законы сложения векторов. Произведение вектора на число. Применение векторов к решению задач. Средняя линия трапеции. Уравнение линии на плоскости. Теорема о площади треугольника. Вычисление площади многоугольника.

    курс лекций, добавлен 08.10.2017

  • Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.

    статья, добавлен 09.05.2021

  • Теоретические основы преобразование выражений с помощью дифференциалов. Понятие производной, понятие частной производной. Связь между производной и дифференциалом. Таблица производных основных элементарных функций. Правила дифференцирования функций.

    контрольная работа, добавлен 20.10.2020

  • Сущность понятий скалярной и векторной математических величин. Основные свойства операций с векторами. Разложение векторов по ортам. Определение проекции вектора и их свойства. Действия с векторами в координатной форме при условие коллинеарности.

    презентация, добавлен 03.10.2012

  • Введение понятия урчуктных (разрывных) функций в дифференциальное исчисление. Нули разрывной функции. Совокупность разрывных функций. Касательные с угловыми коэффициентами. Классическая теорема Ролля. Расчет производной по классической теореме Ферма.

    статья, добавлен 20.05.2018

  • Определение коллинеарности векторов. Вычисление координат точки пересечения медиан и высот треугольника. Составление уравнения прямой, проходящей через его вершину параллельно стороне. Расчет площади основания пирамиды, используя произведения векторов.

    контрольная работа, добавлен 17.11.2017

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.

    курсовая работа, добавлен 17.04.2014

  • Решение систем линейных уравнений методом Гаусса, Крамера и обратной матрицы. Геометрия на плоскости и в пространстве, каноническое уравнение прямой. Раскрытие неопределенностей и вычисление пределов. Производные и дифференцирования сложной функции.

    контрольная работа, добавлен 22.01.2013

  • Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.

    статья, добавлен 03.03.2018

  • Научно-исследовательские труды Б. Римана. Риманова геометрия – раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, с дополнительной структурой, римановой метрикой. Идея математического пространства.

    реферат, добавлен 16.12.2017

  • Понятие и сущность вектора, скалярные и векторные величины. Общая характеристика особенностей векторных величин. Схематическое изображение векторов, их описание и характеристика построения. Описание сложных векторов и сущность и положения закона сложения.

    реферат, добавлен 01.03.2009

  • Определение касательного вектора к многообразию в произвольной точке. Условия существования непрерывной кривой в трехмерном евклидовом пространстве. Тензоры как важнейший из классов величин, числовая запись которых меняется при изменении координат.

    контрольная работа, добавлен 01.09.2017

  • Рассмотрение понятия внутренней связности, определение тензора кривизы Схоутена и изучение его свойств. Изучается строение тензора Схоутена SQS-многообразия. Определение продоложенной почти контактной метрической структуры на распределении многообразия.

    статья, добавлен 15.07.2018

  • Системы линейных уравнений и методы их решения. Определение наибольшего и наименьшего собственных значений итерационным методом. Аппроксимация и интерполяция функций. Численное дифференцирование и интегрирование. Отделение корней нелинейного уравнения.

    курс лекций, добавлен 09.04.2013

  • Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.

    контрольная работа, добавлен 29.02.2020

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.