Оценка нормы производных лямбда-ядер Дирихле

Оценка норм производных лямбда-ядер Дирихле DQ(лямбда,N) в Lp, когда спектр приближающих полиномов лежит в множествах типа гиперболических крестов.

Подобные документы

  • Классификация и основные типы линейных интегральных уравнений. Решение уравнения Вольтерра и Фредгольма. Свойства характеристических чисел и собственных функций самосопряженного интегрального уравнения. Билинейное разложение для самосопряженных ядер.

    курс лекций, добавлен 08.11.2012

  • Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.

    статья, добавлен 24.02.2019

  • Сущность частного приращения по переменной в определенной точке, особенности наличия предела и его определение. Понятие дифференцируемости функции двух переменных, необходимое условие и достаточные. Характеристика основных теорем частных производных.

    лекция, добавлен 29.09.2013

  • Разработка методов вычисления матричной обобщенной функции Миттаг-Леффлера. Анализ методов, базирующихся на применении интерполяционных полиномов. Представление матричной функции Миттаг-Леффлера через значения скалярной на спектре соответствующей матрицы.

    статья, добавлен 27.12.2016

  • Аналіз і оцінка композиції полярних ядер, значень спряжених операторів Ґріна нормальної крайової задачі для параболічної системи диференціальних рівнянь. Дослідження характеру точкових особливостей розв'язку нелінійного інтегрального рівняння Вольтерри.

    автореферат, добавлен 28.10.2015

  • Алгебраически обоснованная гипотеза "блочного" протонно-нейтронного строения ядер атомов химических элементов. Логико-математический путь выведения алгебраических формул периодического закона, системная алгебра. Субстанционная самоорганизация материи.

    научная работа, добавлен 28.02.2012

  • Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.

    лекция, добавлен 26.01.2014

  • Основная задача дифференциального исчисления. Нахождение углового коэффициента касательной к графику кривой. Максимумы и минимумы. Формулы нахождения производных. Линейные аппроксимации. Изучении площадей криволинейных плоских фигур. Частные производные.

    лекция, добавлен 21.04.2010

  • Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.

    учебное пособие, добавлен 15.04.2014

  • Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.

    презентация, добавлен 05.06.2012

  • Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.

    курсовая работа, добавлен 17.01.2011

  • Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.

    лекция, добавлен 29.09.2013

  • Определение производных первого порядка. Порядок решения системы уравнений методом Крамера. Построение графика функции, используя исследования функции y = x3–2,5x2–2x+1,5. Поиск неопределенных интегралов. Определение координат векторов АВ, ВС, СА.

    контрольная работа, добавлен 23.04.2013

  • Розв’язання задач ідентифікації ядер інтегральних моделей динаміки систем з розподіленими параметрами (СРП). Побудова алгоритмів математичного моделювання стану та керування ним для спостережуваних СРП, які описуються неповними диференціальними моделями.

    автореферат, добавлен 29.08.2014

  • Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.

    презентация, добавлен 30.10.2013

  • Понятие производной, ее основные свойства и признаки. Формула расчета скорости равномерно ускоренного движения. Производная алгебраической суммы и частной функции. Определение углового коэффициента прямой. Таблица производных и правил дифференцирования.

    учебное пособие, добавлен 28.12.2013

  • Порядок нахождения координат вектора в базисе. Способы решения системы линейных уравнений методом Гаусса, по правилу Крамера и через обратную матрицу. Определение пределов, производных, наибольшего и наименьшего значений функций. Вычисление интегралов.

    контрольная работа, добавлен 01.05.2010

  • Рассмотрение предела числовой последовательности. Изучение основных правил дифференцирования производных. Важные теоремы о последовательностях и функциях. Производная алгебраической суммы уравнения. Определение скорости при произвольном законе движения.

    презентация, добавлен 18.12.2014

  • Определение и графическое изображение области допустимых значений заданной функции. Вычисление частных производных первого порядка, полного приращения и дифференциала функции. Механизма и основные этапы расчета наибольшего и наименьшего значения.

    контрольная работа, добавлен 25.02.2016

  • История открытия общего метода для построения касательной в любой точке кривой. Анализ первой печатной работы Г. Лейбница по дифференциальному исчислению. Дифференциал как бесконечно малое приращение. Определение понятия правой и левой производных.

    презентация, добавлен 25.11.2015

  • Определение процента учащихся, владеющих математикой. Развитие познавательной активности учащихся. Теория пределов и дифференциальных исчислений. Таблица производных основных элементарных функций. Методы решения неравенств. Понятие критической точки.

    презентация, добавлен 01.12.2016

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Рассмотрение функций частных производных. Двойной интеграл в криволинейных координатах. Переход от декартовой системы оси к оси на плоскости. Изучение понятий, свойств и полярных координат двойного и тройного интеграла. Положение точек в пространстве.

    лекция, добавлен 17.01.2014

  • Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.

    реферат, добавлен 25.05.2017

  • Методы оценки влияния различных случайных факторов на рассматриваемые явления. Изучение пространства элементарных событий. Построение математической теории вероятностей. Расчет гипотезной формулы Бейеса. Определение суммы и производных двух событий.

    лекция, добавлен 18.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.