Обратная спектральная задача для пучков дифференциальных операторов на конечном интервале
Определение и характерные свойства мероморфной функции, исследование ее асимптотики. Изучение и доказательство теоремы единственности, а также методика получения конструктивной процедуры решения обратной задачи для пучков дифференциальных операторов.
Подобные документы
Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013Метод фазового пространства, редукция сингулярного пространства. Основные сведения об относительных резольвентах. Результаты по теории дифференциальных операторов в банаховых пространствах. Конечномерная управляемость уравнения соболевского типа.
автореферат, добавлен 15.09.2012Решение задачи групповой классификации систем линейных дифференциальных уравнений первого порядка с двумя неизвестными функциями двух переменных. Групповая классификация систем дифференциальных уравнений основных подмоделей уравнений газовой динамики.
автореферат, добавлен 16.02.2018Разработка нового метода выведения уравнений на бесконечном интервале времени для вероятности неразорения страховой компании, работающей на (B,S)-рынке. Использование способа выведения интегро-дифференциальных уравнений на бесконечном интервале времени.
статья, добавлен 22.01.2017Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016Алгоритм нахождения интегральных кривых однородных уравнений первого порядка. Исследование интегральных кривых уравнения. Описание решения ряда задач, характеризующих свойства однородных дифференциальных уравнений. Методы построения интегральных кривых.
дипломная работа, добавлен 21.04.2023Понятие, виды и формулы расчета обратной, присоединенной и нулевой матриц, определение суммы и произведения, доказательство свойства умножения ее на число, свойства линейных операций. Определители для двух неравных квадратных матриц одинакового размера.
лекция, добавлен 26.01.2014Изучение свойств и описание состава пространств С.Л. Соболева: плотность, определения и обозначения. Исследование структуры интегральных операторов со слабой особенностью. Представления функции и теоремы вложения Соболева: эквивалент норм в пространстве.
лекция, добавлен 08.11.2012Рассмотрение уравнений второго порядка, разрешенных относительно второй производной. Формулировка и доказательство теоремы Коши (о существовании и единственности решения дифференциального уравнения). Геометрический смысл теоремы, ее общее решение.
презентация, добавлен 17.09.2013Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.
презентация, добавлен 26.09.2017Равенства, определяющие операторов вольтерровского типа. Исследование вопроса о существовании и количестве неподвижных точек операторов вольтерровского типа на примере случая, когда параметры управляющие эволюцией, являются периодическими функциями.
статья, добавлен 03.03.2018Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012- 63. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012 Аналитические решения для двух одномерных задач, описывающих поведение реакционно-диффузионной смеси на конечном и бесконечном промежутках. Решение "обратной задачи" относительно исходных данных, получение двух нетривиальных стационарных решений РДС.
статья, добавлен 26.04.2019- 65. Исследование решений операторно-дифференциальных уравнений в частных производных высшего порядка
Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.
реферат, добавлен 18.05.2016 Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013Определение общего содержания и описание элементарного доказательства Великой теоремы Ферма с использованием малой теоремы Ферма и метода клонирования уравнений. Доказательство справедливости Великой теоремы Ферма для разных значений показателя степени.
задача, добавлен 18.05.2012Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.
реферат, добавлен 09.02.2017Изучение понятия обратимости операторов. Решение точных и соответствующих им приближенных уравнений. Обратимость аппроксимирующих операторов. Разрешимость и оценка погрешности. Исследование связи между обратимостью оператора и разрешимостью уравнения.
курсовая работа, добавлен 22.04.2011Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
контрольная работа, добавлен 07.06.2013Характеристика модели инфекционного заболевания, представляющей собой систему из четырех дифференциальных уравнений с запаздывающим аргументом. Доказательство экспоненциальной устойчивости стационарного решения задачи математического моделирования.
статья, добавлен 27.04.2017Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.
курсовая работа, добавлен 06.07.2014Преобразование задачи Коши в эквивалентное ей интегральное уравнение Вольтерра второго рода. Применение топологического метода – принципа сжатых отображений. Условия существования решений задачи Коши. Дифференциальные свойства решений начальной задачи.
статья, добавлен 11.11.2018Характеристика метода параметрического дифференцирования для численного решения задачи об обтекании строгого конуса осевым сверхзвуковым потоком. Пример решения системы дифференциальных уравнений, описывающих сверхзвуковое обтекание конуса и клина.
реферат, добавлен 10.01.2017Понятие показательной функции и методы построения ее графиков. Основные свойства функции: четность; убывание; ограничение сверху и снизу; непрерывность. Определение логарифмической функции в математическом анализе и теории дифференциальных уравнений.
презентация, добавлен 05.03.2012