Возможные изосимметрийные и деформационные модификации детерминистических модулярных структур из фракталов FV, F(IC(1/2)) И F(CM(1/3)) в 2D пространстве на квадратной сетке

Принципы формирования и модулярного строения фрактальных структур в определенном структурированном пространстве на основе инъективно полученных фракталов Вичека (FV), канторова множества F(CM(1/3)) и итерационной последовательности точек F(IC(1/2)).

Подобные документы

  • Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.

    презентация, добавлен 26.01.2014

  • Способы задания плоскостей в пространстве. Основные аксиомы стереометрии. Изучение возможных вариантов взаимного расположения плоскостей в пространстве, их основные признаки и свойства. Скалярное произведение двух векторов, зная координаты этих векторов.

    реферат, добавлен 20.02.2017

  • Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.

    курсовая работа, добавлен 21.09.2017

  • Рассмотрены фреймы Парсеваля-Стеклова в пространстве из бесконечного числа элементов с заданными нормами. Приведена конструкция блочных фреймов в пространстве. Условия на наборы положительных чисел, которые являются нормами фреймов Парсеваля-Стеклова.

    статья, добавлен 31.05.2013

  • Описание свойства множества всех множеств – его несамоподобие, с использованием утверждения о количестве точек на прямой между двумя точками. Показано, что мощность множества всех множеств больше, чем мощность самоподобного множества; доказательства.

    дипломная работа, добавлен 26.04.2019

  • Знакомство с понятием, историей возникновения и исследованиями Бенуа Мандельброта. Представление о фракталах, встречающихся в нашей жизни. Нахождение подтверждения теории фрактальности окружающего мира. Фракталы в математике, геометрии и в реальном мире.

    практическая работа, добавлен 12.07.2020

  • Формулы интегрирования по частям в определенном интеграле. Рассмотрение правил замены переменной. Нахождение площадей сегментов, криволинейных секторов и трапеций. Измерение плоской фигуры как произвольное ограниченное множество точек на поверхности.

    лекция, добавлен 17.01.2014

  • Рассмотрение планарного разбиения дискретного множества точек по Воронову. Обзор основных свойств диаграммы. Определение линейной сложности. Изучение последовательности построения диаграммы. Выявление свойств разбивающей цепи и двухсвязного списка.

    презентация, добавлен 06.03.2015

  • Исследование фракталов как математических объектов, изучение их особенностей и свойств, таких как самоподобие. Понятие дробной размерности. Канторово множество и его обобщение. Снежинка Коха, ковры Серпинского, кривая Пеано, дракон Хартера-Хейтуэя.

    дипломная работа, добавлен 21.04.2011

  • История происхождения фрактал как сложной геометрической фигуры, обладающей свойством подобия. Классические примеры геометрических фракталов. Использование двумерные стохастические фракталы при моделировании рельефа местности и поверхности моря.

    реферат, добавлен 03.05.2022

  • Фракталы и математический хаос, открытие их свойств при изучении итерированных отображений. Классические фракталы (самоподобие, снежинка Коха, ковер Серпинского). Графическая реализация L-систем в качестве подсистемы вывода. Понятие хаотической динамики.

    реферат, добавлен 03.10.2012

  • Разные виды фракталов. Изучение природных явлений и объектов окружающего мира с точки зрения проявления в них фрактала. Возможности практического применения фрактала. Применение теории хаоса в реальном мире. Броуновское движение и его применение.

    практическая работа, добавлен 02.01.2022

  • Нахождение угла между прямой и плоскостью в пространстве. Составление уравнения перпендикуляра опущенного из точки. Определение формул эллиптического, гиперболического и параболического цилиндров. Написание уравнений геометрических свойств поверхности.

    лекция, добавлен 26.01.2014

  • Фрактал как геометрическое образование, представляющее систему самоподобных фигур, расположенных закономерным образом. Фрактальные свойства в природе. Построение Снежинки Коха и фрактал раковина. Актуальность фракталов в нашей жизни и фракталы-анимация.

    презентация, добавлен 09.12.2012

  • Доказательство теоремы о селекциях многозначных отображений ограниченной вариации на вещественной прямой со значениями в метрическом пространстве. Использование признака компактности Арцела-Асколи в пространстве непрерывных функций в теоремах Гермеса.

    контрольная работа, добавлен 27.08.2016

  • Нахождение достаточных условий однозначной разрешимости дифференциального уравнения Монжа-Ампера на сфере как двумерном многообразии в пространствах постоянной кривизны (в трехмерном пространстве Лобачевского и в трехмерном евклидовом пространстве).

    статья, добавлен 21.06.2018

  • Изучение основных способов задания прямой на плоскости и в пространстве. Взаимное расположение прямых в пространстве: параллельные, пересекающиеся и скрещивающиеся. Взаимное расположение прямой и плоскости: параллельна, лежит в плоскости и ее пересекает.

    курсовая работа, добавлен 01.12.2017

  • Дослідження динаміки стаціонарних структур у нелінійному оптичному резонаторі з перетворенням відображення (ПВ). Параболічне рівняння з ПВ просторової змінної й умовами періодичності. Еволюція форм і стійкості структур при зменшенні коефіцієнта дифузії.

    статья, добавлен 30.01.2017

  • Математический анализ и история возникновения понятия компактности. Определение Бореля-Лебега. Теоремы о компактности и следствия из них. Характеристика компактов как регулярных пространств, замкнутых в любом объемлющем их хаусдорфовом пространстве.

    презентация, добавлен 17.01.2017

  • Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.

    курс лекций, добавлен 02.05.2014

  • Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.

    лекция, добавлен 21.09.2017

  • Рассматриваются нетривиальные свойства сетевых структур в социальных средах, которые выявляются благодаря методологии сетевого анализа. Процессы быстрого роста сетевых структур и риски разрушения. Феномен малого мира и силы слабых связей в структурах.

    статья, добавлен 22.11.2021

  • Основные аксиомы стереометрии, правила пересечения плоскостей. Условия параллельности прямых и плоскостей. Особенности изображения пространственных фигур, построение проекции. Перпендикулярность прямых и плоскостей, углы и расстояния в пространстве.

    реферат, добавлен 01.12.2010

  • Изучение структуры пространств модулярных форм, содержащих мультипликативные эта-произведения с единичным характером. Нахождение размерности и базиса пространств модулярных форм по формуле Коэна-Остерле, поведение функций в параболических вершинах.

    статья, добавлен 31.05.2013

  • Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве, вычисление угла между ними. Порядок решения системы уравнений по формулам Крамера. Определение направляющего вектора. Проверка условия коллинеарности.

    контрольная работа, добавлен 30.10.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.