Комплексные числа как фундаментальный инструмент в современных физических теориях

Комплексные числа и их роль в науке. Их способность представлять вращения и масштабные преобразования в плоскости, описывать волновые процессы и колебания. Применение комплексных чисел в теории относительности, квантовой механике, электродинамике.

Подобные документы

  • Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.

    реферат, добавлен 27.03.2015

  • Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.

    статья, добавлен 30.03.2017

  • Основные особенности алгоритмов выполнения линейных и нелинейных операций в системе обобщенных комплексных чисел. Изучение изоморфизма систем комплексных чисел и обобщенных комплексных чисел. Геометрическая интерпретация обобщенных комплексных чисел.

    статья, добавлен 29.01.2019

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Методика формування уявлення про суть поняття "протилежні числа". Способи знаходження й правильного запису числа, протилежного до даного. Розв’язувати рівнянь, що передбачають застосування поняття числа, протилежного до даного. Приклади протилежних чисел.

    конспект урока, добавлен 19.09.2018

  • Комплексный анализ, его роль в современной науке. Перекрестный и сравнительный анализ влияния комплексного анализа в мире искусственного интеллекта. В нейронных сетях, использующих комплексные числа, можно эффективно моделировать сложные сигналы и данные.

    статья, добавлен 28.12.2024

  • Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.

    конспект урока, добавлен 20.09.2018

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Исследование сущности способа совмещения, частного случая вращения плоскости вокруг горизонтали и фронтали. Анализ метода решения задач преобразования плоскости общего положения в плоскость уровня. Анализ вращения вокруг следов плоскости и линии уровня.

    реферат, добавлен 25.10.2011

  • Элементы линейной алгебры и аналитической геометрии. Дифференциальное исчисление функции одной и нескольких переменных. Комплексные числа, уравнения математической физики. Элементы теории вероятностей и математической статистики, дискретная математика.

    учебное пособие, добавлен 02.12.2014

  • Раціональні числа як нескінченні десяткові періодичні дроби. Особливості основних теорем для розширення множини раціональних чисел. Ірраціональне число як нескінченний неперіодичний десятковий дріб. Модуль дійсного числа, характеристика його властивостей.

    курсовая работа, добавлен 15.06.2016

  • Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.

    контрольная работа, добавлен 16.07.2017

  • Краткий исторический очерк, возникновение и развитие чисел. Поле алгебраических чисел, их суть и значение. Понятие числового поля, алгебраическое число. Рациональные приближения алгебраических чисел. Теорема Лиувиля, трансцендентные числа Лиувиля.

    реферат, добавлен 08.06.2010

  • История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.

    научная работа, добавлен 30.04.2014

  • Геометрические и аффинные преобразования на плоскости. Применение однородных координат для матричной формы записи уравнений аффинных преобразований. Свойства и способы задания аффинного преобразования плоскости, которые переводят прямую в прямую.

    реферат, добавлен 08.04.2020

  • Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.

    реферат, добавлен 15.12.2016

  • Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.

    реферат, добавлен 26.03.2019

  • Геометрическая интерпретация комплексных чисел и действий над ними. Формулы длины отрезка и скалярного произведения векторов. Параллельность, коллинеарность, перпендикулярность. Двойное отношение четырёх точек плоскости. Полюсы относительно окружности.

    учебное пособие, добавлен 28.12.2013

  • Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.

    курсовая работа, добавлен 15.05.2011

  • История возникновения и развития отрицательных чисел в математической науке, особенности их применения в торговых расчетах и физике, их основные функции. Решение арифметических задач с помощью отрицательных чисел, построение уравнений с одним неизвестным.

    презентация, добавлен 12.04.2016

  • Обзор теоремы Чебышева о распределении простых чисел, рассматриваются функции, приближающие простые числа, а также вводится новая функция, достаточно хорошо приближающая простые числа. Приводится обзор результатов по распределению простых чисел.

    статья, добавлен 20.05.2017

  • Понятие простого числа и арифметической прогрессии. Обоснование существования многого количества арифметических прогрессий, образованных из разных простых чисел. Исследование простых чисел в вопросе их принадлежности к арифметической прогрессии.

    статья, добавлен 17.02.2019

  • Биография Пифагора и его школа. Четно-нечетные числа как числа, которые будучи разделены пополам, не делятся. Таблица десяти чисел. Совершенное число как число, сумма дробных частей которого равна самому числу. Влияние пифагорейских гетерий на политику.

    реферат, добавлен 06.03.2010

  • Перевод целого числа из двоичной (восьмеричной) системы в десятичную. Арифметические действия в заданной системе счисления. Перевод чисел из десятичной системы в системы с основаниями 2, 8 и 16. Алгоритм определения минимального из десяти заданных чисел.

    реферат, добавлен 08.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.