Об истории возникновения понятий натурального числа
Рассмотрение теоретико-множественного истолкования натурального числа и понятия преемственности. История формирования понятия натурального числа в начальной школе. Педагогические технологии формирования понятия натурального числа в современной школе.
Подобные документы
История возникновения логарифмов. Общие приемы решения задач с неизвестными величинами. Идея логарифма, то есть идея выражать числа в виде степени одного и того же основания Михаила Штифеля. Признание общего понятия иррациональных и трансцендентных чисел.
статья, добавлен 09.06.2017Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 12.11.2018Понятие комплексного числа, его геометрическая интерпретация. Модуль комплексного числа, свойства модуля и аргумента. Операции сложения, вычитания, умножения и деления комплексных чисел, возведение в степень и извлечение корня. Свойства эрмитовой матрицы.
курсовая работа, добавлен 07.06.2014Изучение определения числа у Г. Фреге. Сравнительный анализ подхода Г. Фреге со взглядами И. Канта, оригинальность и приоритет фрегевского подхода. Недостатки определения числа у Г. Фреге, выявленные Б. Расселом. Критическая оценка исследований Рассела.
статья, добавлен 24.11.2018История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.
курсовая работа, добавлен 22.04.2011- 56. Комплексні числа
Алгебраїчна форма комплексного числа. Дії над комплексними числами, заданими в алгебраїчній формі. Геометрична інтерпретація комплексних чисел. Тригонометрична форма комплексного числа. Дії над комплексними числами, заданими в тригонометричній формі.
лекция, добавлен 08.08.2014 Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.
реферат, добавлен 26.03.2019- 58. История числа Пи
Пи - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Первый шаг в изучении свойств числа Пи, сделанный Архимедом. Вычисление периметра правильного 96-угольника. Формула длины окружности.
презентация, добавлен 14.02.2016 Знакомство с основами математического раздела, изучающего дискретные объекты и множества. Фундаментальные понятия и обозначения, встречающиеся в комбинаторики. Процесс нахождения числа перестановок с помощью Excel. Сочетание и размещение подмножеств.
лабораторная работа, добавлен 16.12.2013Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.
курс лекций, добавлен 27.08.2017История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
реферат, добавлен 15.12.2016Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022Характеристика знаходження умов збіжності розподілу числа розв’язків сумісної системи нелінійних випадкових рівнянь у полі до нормального розподілу. Особливість функції поділу непередбаченої величини. Аналіз зростання числа нульових компонент рішення.
автореферат, добавлен 25.09.2015Понятие комплексного числа, его геометрическая интерпретация. Математические операции над комплексными числами: вычитание и деление, возведение в степень, извлечение корня, тригонометрическая форма, свойства модуля и аргумента. Уравнения высших степеней.
курсовая работа, добавлен 26.09.2009Психолого-педагогические, исторические основы построения факультативных занятий в средней школе. Развитие познавательных интересов учащихся. Анализ содержания учебной литературы по теме "комплексные числа". Методические рекомендации по проведению занятий.
дипломная работа, добавлен 17.11.2021История возникновения науки арифметики, ее процесс развития. Открытие несоизмеримых отрезков греческими математиками из школы Пифагора. Проблематика определения понятия функции. Процесс изучения тригонометрических и логарифмических функций в школе.
курсовая работа, добавлен 29.10.2013Комплексные числа и их геометрическая интерпретация, свойства модуля и аргумента. Математические действия с ними: сложение и вычитание, умножение и деление, возведение в степень и извлечение корня. Решение квадратного уравнения с комплексным неизвестным.
курсовая работа, добавлен 26.12.2011Сущность и введение мнимой единицы, понятие комплексного аргумента. Особенности алгебраической, тригонометрической и экспоненциальной формы записи комплексного числа. Вычитание, сложение, деление и умножение комплексных чисел, их извлечение из корней.
презентация, добавлен 16.01.2018- 71. Числовые системы
Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.
учебное пособие, добавлен 16.06.2015 История развития комплексных чисел. Соглашение о комплексных числах. Сложение, деление и вычитание комплексных чисел, их геометрическое изображение. Модуль и аргумент комплексного числа. Геометрический смысл сложения и вычитания комплексных чисел.
доклад, добавлен 21.10.2011Прикладная математика, процесс математического моделирования. Абсолютная и относительная погрешность приближения и ее граница. Проценты. Нахождение процентов от числа, числа по ее процентам, процентного отношения двух чисел. Решение квадратных уравнений.
шпаргалка, добавлен 06.09.2010- 74. Арифметика чисел
Натуральні числа, використовувані в математиці. Загальне ділення з остачею. Взаємно-прості та прості числа. Найбільший спільний дільник та методи його знаходження. Порівняння за модулем Лема. Арифметичні дії з раціональними числами і десятковими дробами.
лекция, добавлен 24.01.2014 Поняття комплексного числа. Тригонометрична форма комплексного числа. Основні дії над матрицями. Теорема про базовий мінор. Декартова система координат. Обмежені й необмежені послідовності. Елементи математичної логіки. Скінченні графи й сітки.
курс лекций, добавлен 02.06.2015