Граничні теореми для схеми Бернуллі
Особливості трактування основних понять та розрахунку граничних теорем для схеми Бернуллі. Характеристика особливостей побудови графіка до функції Лапласа. Сутність теореми Бернуллі про стійкість відносних частот та ймовірності появи випадкових частот.
Подобные документы
Послідовність многочленів Апеля. Многочлени та числа Бернуллі. Основна властивість многочленів Бернуллі. Зв’язок з простими числами. Експоненційна генератриса послідовності. Правило винесення за знак біноміального коефіцієнта. Формальний степеневий ряд.
курсовая работа, добавлен 22.01.2015Отримання граничних теорем для сум незалежних випадкових величин, якi складають фундамент теорії ймовірностей. Теореми для сум незалежних випадкових елементів зі значеннями в абстрактних просторах та для випадкових елементiв з операторними нормуваннями.
автореферат, добавлен 07.03.2014Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
лекция, добавлен 01.05.2014Встановлення граничних результатів для випадкових рекурентних співвідношень, пов'язаних з гратками Бернуллі. Теорія коалесцентів з множинними зіткненнями. Знаходження асимптотичної поведінки моментів рекурентних співвідношень загального вигляду.
автореферат, добавлен 30.07.2015Поняття послідовних незалежних експериментів та схеми Бернуллі. Приклади застосування локальної та інтегральної теорем Лапласа. Відхилення відносної частоти від постійної ймовірності в незалежних експериментах. Скінченний однорідний ланцюг Маркова.
реферат, добавлен 13.06.2010Елементи комбінаторики. Основні види з’єднань: розміщення, перестановки і сполучення. Випадкові події, імовірність подій: класичне визначення імовірності. Теореми додавання та множення ймовірностей. Формула повної імовірності. Формули Байєса та Бернуллі.
лекция, добавлен 26.01.2014Послідовності незалежних випробовувань. Числові характеристики, математичне сподівання та дисперсія випадкових величин. Функції випадкового аргументу, закон її розподілу. Закон великих чисел. Теореми Чебишева та Бернулі. Поняття про теорему Ляпунова.
реферат, добавлен 05.05.2011Основний принцип комбінаторики. Задачі на класичне означення ймовірності. Приклади розв'язку задач на операції з множинами. Застосування аксіом теорії ймовірностей. Умовні ймовірності і незалежні події. Особливості застосування випробування Бернуллі.
контрольная работа, добавлен 07.12.2011Метод математичної індукції. Елементи комбінаторики. Елементи теорії імовірності (поняття про випадкову подію). Основні теореми ймовірностей (додавання, множення, формула Бейєса). Повторення випробувань. Формула Бернуллі (дисперсія випадкової величини).
лекция, добавлен 08.08.2014Випадкові події та означення ймовірності. Основні формули додавання і множення ймовірностей. Незалежні повторні випробування, формула Бернуллі. Дискретні випадкові величини та їх числові характеристики. Статистична перевірка статистичних гіпотез.
методичка, добавлен 02.12.2015Диференціальні рівняння першого порядку та рівняння з відокремленими змінними, однорідні та лінійні диференціальні рівняння. Рівняння, які зводяться до лінійних. Рівняння Бернуллі та Ріккаті. Рівняння в повних диференціалах. Інтегруючий множник.
лекция, добавлен 08.08.2014Гауссівські та негауссівські граничні розподіли перенормованих оцінок найменших квадратів коефіцієнтів регресії випадкових процесів із сильною залежністю у випадку дискретного часу. Метод оцiнювання коефiцiєнта регресiї стацiонарних випадкових процесiв.
автореферат, добавлен 21.11.2013Дослідження теорем про великі відхилення для логарифму відношення правдоподібності у задачі розрізнення процесів нормальної авторегресії. Застосування теореми аналізу поведінки ймовірностей помилок першого та другого роду критерію Неймана-Пірсона.
автореферат, добавлен 27.07.2014Огляд досліджень субгармонічних функцій. Теореми про рівномірну неперервність. Зв’язок між різними видами збіжності послідовностей субгармонічних функцій. Загальні теореми про граничні множини Азаріна. Субгармонійні функції з нерегулярним зростанням.
автореферат, добавлен 14.09.2015- 15. Граничні теореми для бакстерівських сум випадкових функцій та їх застосування для оцінок параметрів
Дослідження основних умов збіжності бакстерівських сум випадкових процесів і полів та їх застосування для оцінювання параметрів кореляційних функцій. Детермінована стала послідовності білінійних форм. Вивчення загального виду гауссових випадкових полів.
автореферат, добавлен 30.10.2015 Специфіка оберненої, протилежної і оберненої до протилежної теорем, їх виростання в розрахунках, найпростіші схеми правильних міркувань. Характеристика та значення дедуктивного доведення та повної індукції, опис та сутність методу від супротивного.
реферат, добавлен 17.04.2015Закони розподілу ймовірностей випадкових величин. Теорема Чебишова та центральна гранична теорема Ляпунова. Нормальний закон розподілу випадкових величин: нормована функція Лапласа або інтеграл ймовірностей, розподіл Стьюдента, асиметрія та ексцес.
презентация, добавлен 21.03.2014Класичне і статистичне означення ймовірності. Теореми Лапласа, формула Пуассона. Відхилення відносної частоти від сталої імовірності в незалежних випробуваннях. Найімовірніше число появ події. Числові характеристики дискретних випадкових величин.
учебное пособие, добавлен 14.07.2017Визначення інтерпретації закону двоїстості де Моргана для довільної множини теорії ймовірності. Формула знаходження найймовірнішого числа подій. Специфіка використання інтегральної теореми Лапласа та розподілу Пуассона у рішеннях математичних задач.
практическая работа, добавлен 30.04.2015- 20. Граничні теореми для бакстерівських сум випадкових функцій та їх застосування для оцінок параметрів
Умови збіжності бакстерівських сум від приростів загального виду гауссових випадкових полів. Теорема Леві-Бакстера для сумісно субгауссового випадкового поля. Симетричний стохастичний інтеграл з диференціалом від випадкового процесу бакстерівського типу.
автореферат, добавлен 27.08.2014 Виведення формули Бернуллі. Найбільш імовірне число появи подій при повторних випробуваннях. Випадкові дискретні та неперервні величини, їх характеристики і закони розподілу ймовірностей. Функція щільності розподілу та парадокс теорії ймовірностей.
презентация, добавлен 21.03.2014Формули множення ймовірностей для залежних та незалежних випадкових подій. Локальна та інтегральна теореми Мавра-Лапласа. Формула Пуассона малоймовірних випадкових подій. Нерівності Чебишова та її значення. Теорема Бернулі. Біноміальний закон розподілу.
шпаргалка, добавлен 19.01.2014Особливості еволюції задачі: від теореми Піфагора до Великої теореми Ферма. Значення для науки великого об’єднання в математиці. Творець великої проблеми П. де Ферма: його діяльність, книга "Арифметика", способи доведення теореми про прості числа.
презентация, добавлен 03.01.2016Зростання і спадання функцій. Правила логарифмічного диференціювання. Схема дослідження функцій. Опуклість і угнутість кривої, точки перегину. Максимуми і мінімуми функції. Найбільше і найменше значення функції на відрізку. Асимптоти графіка функції.
курсовая работа, добавлен 19.07.2017Характеристика особливостей методів інтегрування лінійних диференціальних рівнянь 1-го порядку. Проведення аналізу диференціальних рівнянь в R-L контурі. Вивчення способу варіації довільної константи. Розгляд прикладу використання методу Бернуллі.
контрольная работа, добавлен 16.02.2014