Обыкновенные дифференциальные уравнения
Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.
Подобные документы
Линейные дифференциальные уравнения n-ного и второго порядка. Уравнения с постоянными коэффициентами. Неоднородные уравнения второго порядка с постоянными коэффициентами. Уравнения в частных производных, содержащие несколько независимых переменных.
курс лекций, добавлен 26.08.2015Исследование этапов решения начальной задачи для дифференциального уравнения второго порядка со случайными коэффициентами. Расчет формулы для нахождения его математического ожидания в случае равномерного закона распределения случайного коэффициента.
статья, добавлен 21.06.2018Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014- 54. Об одной задаче в бесконечной полосе для обобщенного двуосесимметрического уравнения Гельмгольца
Для обобщенного двуосесимметрического уравнения Гельмгольца в бесконечной полосе a поставлена задача с условиями на линии. При одних ограничениях на параметры уравнения установлено существование решения поставленной задачи, при других - единственность.
статья, добавлен 31.05.2013 Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Рассмотрение линейных дифференциальных уравнений первого порядка. Методы вариации постоянной, использование интегрирующего множителя. Порядок приведения уравнения Риккати к формуле Бернулли. Выявление проблем в применении дифференциального исчисления.
курсовая работа, добавлен 16.12.2014Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
курсовая работа, добавлен 04.11.2012Определение корней уравнения, уточнение их с применением графических методов хорд и касательных Ньютона и простых итераций. Составление таблиц приближенных значений интеграла дифференциального уравнения с использованием методов Эйлера-Коши и Рунге-Кутта.
контрольная работа, добавлен 21.09.2016Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера.
лекция, добавлен 14.03.2014Существование и единственность решения задачи для псевдопараболического и гиперболического уравнений четвертого порядка, когда условия склеивания задается на не характеристической линии. Сведение решаемой задачи к решению системы интегральных уравнений.
статья, добавлен 18.05.2016Получение достаточных условий разрешимости краевой задачи для обыкновенного дифференциального уравнения третьего порядка в случае резонанса. Рассмотрение периодической краевой задачи для обыкновенного дифференциального уравнения. Ядро и образ оператора.
статья, добавлен 26.04.2019Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.
контрольная работа, добавлен 01.03.2017Понятие дифференциального уравнения в частных производных. Особенности порядка старшего производного, его свойства. Уравнение математической физики с постоянными коэффициентами в случае двух переменных. Характеристика и расчет уравнения Лапласа и Фурье.
практическая работа, добавлен 18.10.2013Основные понятия об обыкновенных дифференциальных уравнениях. Однородные дифференциальные уравнения 1-го порядка с разделяющимися переменными. Обобщенное однородное и линейные дифференциальные уравнения. Уравнение Бернулли и интегрирующий множитель.
контрольная работа, добавлен 28.06.2014Теорема о существовании единственности решения дифференциальных уравнений различных порядка с разделяющимися переменными. Решение систем с постоянными коэффициентами. Линейно независимые и зависимые системы функций. Определитель Вронского и его свойства.
курс лекций, добавлен 30.07.2017Исследование локальных свойств интеграла столкновений и классического решения нестационарного уравнения переноса излучения. Свойства гладкости интеграла столкновений. Сущность кусочно-гладкой поверхности, изменение порядка интегрирования в интегралах.
статья, добавлен 21.06.2018Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.
реферат, добавлен 09.02.2017Описание связи между неизвестной функцией и ее производными дифференциальным уравнением. Решение уравнения Клеро в параметрическом виде. Определение огибающей семейства прямых. Общее решение уравнения Лагранжа. Дифференцирование равенства по переменной x.
реферат, добавлен 21.05.2021Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
контрольная работа, добавлен 07.06.2013История и важные этапы развития теории дифференциальных уравнений. Дифференциальное исчисление, созданное Лейбницем и Ньютоном. Доказательство неразрешимости алгебраических уравнений в радикалах. Простейшие дифференциальные уравнения первого порядка.
доклад, добавлен 19.02.2016Построение области асимптотической устойчивости одного скалярного дифференциально-разностного уравнения с одним запаздыванием и периодическим кусочно-постоянным коэффициентом в плоскости параметров уравнения. Задача Коши для дифференциального уравнения.
статья, добавлен 26.04.2019Определение возможности применения метода осциллирующих функций к нахождению приближенного решения задачи Коши для дифференциального уравнения с отражением аргумента. Оценка полученной погрешности построенного решения, график построенного решения.
статья, добавлен 26.04.2019Функция комплексного переменного. Примеры уравнений математической физики. Формулировка краевой задачи. Колебания бесконечной струны. Формула Даламбера решения задачи Коши для волнового уравнения. Уравнения теплопроводности. Математическая статистика.
практическая работа, добавлен 10.10.2023