Метод задачі Рімана–Гільберта в теорії обернених задач та інтегровних рівнянь
Аналітичний метод для дослідження обернених задач розсіяння, що виникають у теорії розповсюдження електромагнітних хвиль. Побудова теорії інтегрування початково-крайових задач. Методи аналітичної факторизації, заснованих на задачі Рімана-Гільберта.
Подобные документы
Встановлення умов і вигляду розв'язку асимптотичної задачі для еволюційного рівняння з неоднорідною частиною у вигляді многочлена та розв'язності деяких обернених (багатоточкових) задач для рівняння з параметрами у рефлексивному банаховому просторі.
автореферат, добавлен 28.06.2014Зміст і призначення теорем про збіжність у теорії міри та інтегралу: Єгорова і Лебега про мажоровану збіжність. Концепція про слабку збіжність у банахових просторах. Теорема Рімана про збіжність рядів та її застосування, математичне обґрунтування.
автореферат, добавлен 28.09.2015Дослідження теорем метричного характеру про оцінки знизу малих знаменників, які виникли при побудові формальних розв'язків задач. Аналіз задач з інтегральними умовами для рівнянь із частинними похідними зі змінними коефіцієнтами гіперболічного типу.
автореферат, добавлен 30.07.2015Зародження та розвиток ідеї інтегрування. Метод вичерпання Евдокса як перший відомий метод для розрахунку інтегралів. Суть механічного методу Архімеда. Етап в побудові поняття "інтеграл", пов'язаний з іменами Ньютона і Лейбніца. Інтеграли Коші та Рімана.
доклад, добавлен 19.03.2012Основні напрямки сучасної теорії зображень. Роль теорії матричних задач А.В. Ройтера. Обчислення матричної алгебри Aуслендера для однієї задачі про подібність пари матриць з деякими природними співвідношеннями. Формулювання класифікаційної теореми.
статья, добавлен 04.02.2017- 56. Нелокальні крайові задачі для рівнянь з частинними похідними та диференціально-операторних рівнянь
Вибір функціональних просторів для кожної із поставлених нелокальних задач. Встановлення умов однозначної розв’язності нелокальних задач для рівнянь і систем зі сталими та змінними коефіцієнтами. Обгрунтування методу мінімізації у гільбертових просторах.
автореферат, добавлен 30.07.2014 Розширення класів допустимих спрямлюваних кривих. Дослідження граничних властивостей інтегралу типу Коші з кусково-неперервною щільністю. Вплив функцій та кривої граничного спряження на розв'язок крайової задачі Рімана. Встановлення стійкості індексу.
автореферат, добавлен 29.08.2015- 58. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язок задачі Діріхле та задачі з косою похідною для еліптичних рівнянь другого порядку. Вирішення крайової задачі та задачі Коші для параболічного рівняння. Побудова оптимального керування системами, що описуються параболічною крайовою задачею.
автореферат, добавлен 28.12.2015 Встановлення властивостей запропонованих схем методу скінчених елементів з вибором координатних функцій для обраних крайових задач (задачі Діріхле для рівняння Пуассона, бігармонічної задачі з крайовими умовами). Характеристика ітераційних методів.
автореферат, добавлен 28.12.2015Дослідження та розробка конструктивних методiв роз'язування задач прогнозування та оцiнки правих частин параболiчних рiвнянь другого порядку з умовами спряження на границях роздiлу та виведення рiвнянь для мiнiмаксних оцiнок i похибок оцiнювання.
автореферат, добавлен 27.02.2014Особливість способу розв’язування різницевих рівнянь, що виникають при дискретизації двовимірних крайових задач еліптичного типу. Узагальнення поняття "ітераційні процеси Якобі і Гаусса-Зейделя". Розбиття матриці для застосування комбінованого методу.
статья, добавлен 25.08.2016Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
автореферат, добавлен 27.08.2015Пропозиція та обґрунтування схеми наближеного розв’язання крайової задачі за допомогою кубічних сплайнів дефекту два. Дослідження умов для лінійних диференціальних рівнянь із змінним запізненням. Побудова ефективних обчислювальних алгоритмів рішення.
статья, добавлен 25.08.2016Встановлення нерівностей дискретного та континуального типу обернених середніх гармонійних. Дослідження та побудова аналітичної теорії гіллястих ланцюгових дробів та їх континуального аналогу інтегральних ланцюгових дробів. Поява нерівностей як наслідок.
статья, добавлен 30.01.2017Розроблення методів побудови асимптотичних розв’язків сингулярно збурених систем нетерового типу для лінійних і нелінійних звичайних диференціальних рівнянь. Новий підхід до дослідження узагальнених початкових і крайових задач з імпульсною дією.
автореферат, добавлен 28.07.2014Дослідження початково-крайових та спектральних задач про малі рухи системи гіростатів, які послідовно з’єднані один з іншим сферичними шарнірами. Теорема існування рішень задачі Коші. Теорема М.Є. Жуковського про рух твердого тіла з ідеальною рідиною.
автореферат, добавлен 29.07.2015Розвиток теорії евклідової комбінаторної оптимізації в геометричному проектуванні шляхом дослідження властивостей спеціальних класів цільових функцій на множині поліпереставлень. Дослідження математичних моделей, розробка методів розв’язання класу задач.
автореферат, добавлен 29.09.2015Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014Постановка задачі інтерполяції функції. Інтерполяційний многочлен у формулі Лагранжа. Вимоги до обчислювальних алгоритмів. Метод обернених різниць Тіле. Аналіз модифікованого алгоритму Течера-Тьюкі на предмет його використання в обчислювальних задачах.
практическая работа, добавлен 16.11.2009Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
автореферат, добавлен 13.07.2014Дослідження початково-крайової задачі для квазілінійних двовимірних рівнянь параболічного типу зі сталими коефіцієнтами. Застосування функцій Гріна для одержання вагових апріорних оцінок точності різницевих схем у випадку крайових умов третього роду.
автореферат, добавлен 29.10.2015Вивчення крайових задач для вироджених систем звичайних диференціальних рівнянь за припущення, що відповідна вироджена лінійна система диференціальних рівнянь зводиться до центральної канонічної форми. Отримання ефективних коефіцієнтних умов біфуркації.
автореферат, добавлен 20.07.2015Дослідження особливостей основних питань однозначної розв’язності деяких крайових задач для загальних диференціальних рівнянь і систем із сталими комплексними коефіцієнтами в напівалгебраїчних областях. Характеристика методу двоїстості рівняння-область.
автореферат, добавлен 29.08.2015Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Встановлення необхідних і достатніх умов існування розв'язків різних класів векторних задач дискретної оптимізації. Побудова математичних моделей та методів дослідження дискретних задач оптимізації в умовах невизначеності та оцінка їх ефективності.
автореферат, добавлен 12.07.2015