Характеристика основных методик построения и расчета нейронных сетей

Трудности алгоритма обучения персептрона. Методика вычисления выходов слоя Кохонена до применения активационной функции. Нейрочип – программируемое устройство, которое имеет операционные узлы для выполнения операций, свойственных нейронным сетям.

Подобные документы

  • Методика расчета электрической цепи и особенности использования библиотеки стандартных подпрограмм. Описание и структура алгоритма подпрограммы вычисления определенного интеграла методом прямоугольников, угла сдвига фазы между током и напряжением.

    курсовая работа, добавлен 17.05.2017

  • Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.

    реферат, добавлен 20.02.2009

  • Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.

    реферат, добавлен 08.10.2011

  • Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.

    методичка, добавлен 26.11.2015

  • Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.

    статья, добавлен 26.04.2019

  • Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.

    контрольная работа, добавлен 06.12.2015

  • Сущность и функции систем массового обслуживания. Характеристика детерминированных, стохастических и базовых сетей очередей. Алгоритм расчета замкнутых сетей через вероятности состояний. Применение алгоритма свертки при моделировании вероятностных сетей.

    реферат, добавлен 14.11.2013

  • Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.

    курсовая работа, добавлен 22.05.2018

  • Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.

    дипломная работа, добавлен 28.08.2020

  • Методы применения инновационных интеллектуальных технологий в маркетинге на основе моделирования нейронных сетей с использованием самоорганизующихся карт Кохонена. Понятие нейросетевых технологий. Группировка информации. Визуализация многомерных данных.

    статья, добавлен 08.02.2014

  • Анализ вопросов использования нейронной сети для распознавания фигур технического анализа. Сравнение способов формирования входных образов. Конгломерат нейронных сетей для распознавания фигур технического анализа. Трактовка выходов нейронной сети.

    статья, добавлен 27.04.2017

  • История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.

    реферат, добавлен 05.04.2017

  • Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.

    курсовая работа, добавлен 22.06.2011

  • Применение искусственных нейронных сетей. Выработка алгоритма синтеза контроллера, формирующего порог, который обеспечит заданные выходные реакции объекта управления (устройства), с использованием математического аппарата искусственных нейронных сетей.

    статья, добавлен 02.04.2019

  • Методы обработки данных и построения архитектур нейронных сетей для выполнения поведенческого анализа вредоносного программного обеспечения. Сделаны выводы требованиях к данным в рамках рассматриваемой задачи и об эффективности предложенной методики.

    статья, добавлен 05.09.2021

  • Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.

    статья, добавлен 31.08.2018

  • Система шифрования на основе искусственных нейронных сетей типа GRNN. Нейронная сеть как подходящий выбор для функциональных форм, используемых для операций шифрования и дешифрования. Построение системы с использованием постоянно изменяющегося ключа.

    статья, добавлен 30.04.2018

  • Искусственный интеллект и нейронные сети. Особенности использования искусственных нейронных сетей в системах управления. Системы адаптивного управления, использующие эталонную модель Ляпунова. Архитектура построения нейросетевых систем управления.

    отчет по практике, добавлен 09.02.2019

  • Рассмотрение вопросов, связанных с решением задачи построения и обработки когнитивных структур на основе использования нейронных сетей. Организация специализированной модели, настроенной на решения поставленной задачи "Нейросетевая когнитивная модель".

    статья, добавлен 23.08.2020

  • Особенности фондовой биржи, методы прогнозирования цен. Определение термина "торговая система". Сентиментный анализ сообщений Twitter. Создание словаря классификаций эмоций. Обучение искусственных нейронных сетей, алгоритм однослойного персептрона.

    курсовая работа, добавлен 28.12.2015

  • Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.

    курсовая работа, добавлен 16.05.2016

  • Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.

    реферат, добавлен 15.03.2009

  • Обзор искусственных нейронных сетей, состоящих из множества взаимодействующих простых процессоров и представляющих собой устройства параллельных вычислений. Анализ структуры связей детали сетевой конструкции. Вычисления сигналов и значений нейронов.

    лекция, добавлен 21.10.2013

  • Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.

    реферат, добавлен 15.03.2009

  • Классификация ИС в менеджменте. Особенности систем поддержки принятия решений. Характеристика интеллектуального гуманоидного робота от Honda. Базовые понятия и методика построения ЭС. Рассмотрение нейронных сетей. Определение виртуальной реальности.

    реферат, добавлен 06.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.