Построение уравнения парной регрессии методом наименьших квадратов
Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.
Подобные документы
Нахождение метода наименьших квадратов уравнения линейной регрессии, где признак: среднесписочное число работников магазина и сумма розничного товарооборота. Определение параметров зависимости. Применение коэффициента корреляции, его вычисление.
контрольная работа, добавлен 24.11.2014- 77. Эконометрика
Линейная модель парной регрессии и корреляции. Проверка существенности факторов и показатели качества регрессии. Методы оценки структурной формы модели. Автокорреляция уровней временного ряда. Моделирование сезонных колебаний, критерий Дарбина-Уотсона.
курс лекций, добавлен 27.11.2013 Информация, характеризующая зависимость выпуска продукции от объема капиталовложений по предприятиям легкой промышленности региона. Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов.
контрольная работа, добавлен 20.04.2015Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013Линейная модель парной корреляции, степенная модель парной регрессии, показательная и гиперболическая функция. Индекс корреляции, средняя относительная ошибка, коэффициент детерминации, F-критерий Фишера. Прогнозное значение результативного показателя.
контрольная работа, добавлен 19.04.2013Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 04.05.2011Построение математической модели системы на основе экспериментально полученных в процессе её функционирования входных и выходных сигналов. Оценки по критериям наименьших квадратов, наименьших взвешенных квадратов, максимального правдоподобия и риска.
лабораторная работа, добавлен 16.12.2013- 83. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Расчет линейного коэффициента парной корреляции и оценка тесноты связи. Особенность статистической значимости параметров регрессии и корреляционной системы. Подсчет ошибки прогноза и его доверительного интервала. Вычисление коэффициента детерминации.
контрольная работа, добавлен 28.08.2017Изучение зависимости прибыли от выработки продукции на одного человека. Построение линейного уравнения парной регрессии. Установление наличия (или отсутствия) циклической компоненты и её периода с помощью коэффициента автокорреляции уровней ряда.
контрольная работа, добавлен 20.11.2014Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.
контрольная работа, добавлен 30.11.2013Оценка корреляционной матрицы факторных признаков. Построение уравнений парной и множественной регрессии. Определение доверительного интервала прогнозов. Оценка значимости регрессивного уравнения и числа детерминации, взаимосвязь по временным рядам.
методичка, добавлен 28.12.2013Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.
курсовая работа, добавлен 14.12.2015Применение метода наименьших квадратов как способа регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Парная линейная регрессия и системы одновременных уравнений. Авторегрессионное преобразование.
реферат, добавлен 17.10.2012Характеристика особенностей линейного парного регрессионного анализа. Методические указания по решению задач по расчету коэффициента линейной парной корреляции и построения уравнения линейной парной регрессии. Анализ множественного регрессионного анализа.
методичка, добавлен 16.08.2014Парная линейная регрессия. Вычисление неизвестных параметров с помощью метода наименьших квадратов. Коэффициенты корреляции, эластичности и аппроксимации. Создание нелинейной регрессии степенного и показательного вида. Уравнение равносторонней гиперболы.
контрольная работа, добавлен 27.06.2012Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.
лабораторная работа, добавлен 06.02.2015Установление мультиколлинеарности факторов. Уравнение множественной регрессии в линейной форме с полным набором факторов. Статистическая значимость уравнения и его параметров с помощью критериев Фишера и Стьюдента. Расчет коэффициентов эластичности.
задача, добавлен 16.03.2014Построение поля корреляции, формулирование гипотезы о форме связи. Расчет параметров уровней линейной парной регрессии. Оценка тесноты связи с помощью показателя линейной парной корреляции. Анализ качества уравнений с помощью средней ошибки аппроксимации.
контрольная работа, добавлен 10.10.2016Уравнение линейной парной регрессии. Качественная оценка тесноты связи величин на основе шкалы Чеддока. Алгоритм оценки статистической значимости уравнения регрессии в целом. Методика расчета гиперболической, полулогарифмической и степенной моделей.
контрольная работа, добавлен 17.04.2014Расчет и сущность параметров уравнений линейной и нелинейной парной регрессии. Связь доходов от международных перевозок и длины дороги с помощью показателей корреляции и детерминации. Оценка аппроксимации качества уравнения регрессии доходов от перевозок.
курсовая работа, добавлен 09.06.2015Точечные и интервальные оценки случайной величины. Методика проверки статистических гипотез. Определение коэффициента корреляции, решение уравнения парной регрессии. Построение и анализ регрессионной модели. Моделирование одномерных временных рядов.
методичка, добавлен 01.09.2012Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.
контрольная работа, добавлен 10.07.2016Парная регрессия и корреляция. Построение уравнения регрессии. Оценка параметров модели, тесноты связи. Расчет доверительных интервалов. Точечный и интервальный прогноз по уравнению линейной регрессии. Основные цели множественной регрессии и корреляции.
методичка, добавлен 16.05.2016Особенности эконометрического метода. Спецификация моделей парной регрессии. Коэффициенты эластичности по разным видам регрессионных моделей. Спецификация моделей множественной регрессии. Понятие мультиколлениарности, ее значение при отборе факторов.
шпаргалка, добавлен 25.02.2014