Линейные регрессионные модели с гетероскедастичными остатками

Построение регрессионных моделей по рядам динамики. Использование критериев Фишера и Стьюдента, формулы линейного коэффициента корреляции. Оценка параметров уравнения регрессии, применение метода наименьших квадратов. Примеры гетероскедастичности.

Подобные документы

  • Статистическая зависимость расходов на гостиницу от стоимости путевки. Построение графика и поиск коэффициента корреляции. Параметры линейной модели регрессии. Проверка явления гетероскедастичности на основе критерия корреляции Спирмена, автокорреляция.

    задача, добавлен 06.11.2015

  • Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".

    статья, добавлен 03.11.2015

  • Рассмотрение метода взвешенных наименьших квадратов. Исследование случая парной регрессии. Нарушение гомоскедастичности и наличие автокорреляции остатков. Уравнение регрессии без свободного члена. Дисперсия результативного признака и остаточных величин.

    презентация, добавлен 13.07.2015

  • Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.

    практическая работа, добавлен 31.10.2014

  • Рототабельное планирование эксперимента второго порядка. Порядок проверки значимости коэффициентов уравнения регрессии с помощью критерия Стьюдента. Проверка адекватности уравнения регрессии с помощью критерия Фишера. Построение чертежа линии уровня.

    контрольная работа, добавлен 20.10.2013

  • Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.

    презентация, добавлен 18.12.2012

  • Использование метода наименьших квадратов для отыскания приближенных зависимостей между изучаемыми экспериментальными величинами. Решение уравнений в матричном виде. Нахождение интервальных оценок неизвестных параметров и доверительного интервала.

    курсовая работа, добавлен 05.05.2014

  • Построение оценки функции регрессии с помощью метода наименьших квадратов. Нахождение значения коэффициента методами трапеций и парабол, решение уравнения. Изучение распределения температуры в тонком цилиндрическом стержне. Решение краевой задачи.

    дипломная работа, добавлен 24.12.2011

  • Развитие методов регуляризации решения систем линейных уравнения (СЛАУ). Предложение модифицированного метода наименьших квадратов решения СЛАУ, в основе которого лежит использование q-дифференцирования. Выполнение задач в математическом пакете Matlab.

    статья, добавлен 27.07.2017

  • Понятие корреляции, сущность корреляции между двумя случайными величинами. Параметрические и непараметрические показатели корреляции. Свойства коэффициента корреляции, понятие ложной корреляции. Оценка корреляционной связи по коэффициенту корреляции.

    реферат, добавлен 30.10.2015

  • Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.

    презентация, добавлен 20.01.2015

  • Правила проведения количественного анализа. Расчёт неизвестных величин по результатам измерений, содержащих случайные ошибки. Оценка отклонения точки от прямой. Основной принцип метода наименьших квадратов. Построение градуировки в спектрофотометрии.

    презентация, добавлен 29.05.2020

  • Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.

    контрольная работа, добавлен 23.05.2021

  • Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.

    презентация, добавлен 05.06.2012

  • Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.

    краткое изложение, добавлен 17.03.2015

  • Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.

    контрольная работа, добавлен 11.04.2015

  • Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.

    лекция, добавлен 10.10.2014

  • Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.

    контрольная работа, добавлен 12.01.2015

  • Сущность и содержание метода наименьших квадратов, свойства оценок на его основе. Парная линейная регрессия. Системы одновременных уравнений, направления ее исследования и порядок решения. Авторегрессионное преобразование. Применение МНК в экономике.

    курсовая работа, добавлен 15.05.2013

  • Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.

    краткое изложение, добавлен 22.05.2010

  • Определение математического ожидания, дисперсии, функции распределения, вероятности событий, ошибок измерений. Построение эмпирической функции распределения. Статистическая проверка гипотезы о нормальном распределении. Оценка коэффициента корреляции.

    контрольная работа, добавлен 13.05.2014

  • Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.

    контрольная работа, добавлен 17.05.2019

  • Уравнение парной регрессии. Система нормальных уравнений. Параметры уравнения регрессии. Показатель тесноты связи. Коэффициент эластичности. Ошибка аппроксимации и индекс корреляции. Поиск тесноты связи с помощью множественного коэффициента корреляции.

    контрольная работа, добавлен 29.12.2011

  • Определение критериев оптимальности планирования. Построение матрицы планирования с ортогональными вектор-столбцами. Оценка коэффициентов уравнения регрессии. Проверка адекватности описания объекта полиномом второго порядка с помощью F-критерия Фишера.

    контрольная работа, добавлен 25.01.2024

  • Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.

    контрольная работа, добавлен 23.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.