Приведение матрицы к каноническому виду через ортогональные преобразования

Коэффициенты квадратичной формы, неоднородная система линейных уравнений методом Гаусса. Собственные значения и собственные векторы линейных операторов. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду, вид этой формы.

Подобные документы

  • Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.

    реферат, добавлен 02.06.2021

  • Рассмотрение плана проведения семинарских занятий. Анализ алгебраических поверхностей и их классификация. Приведение уравнений поверхностей второго порядка к каноническому виду. Исследование асимптотических направлений, пересечений, касаний, особых точек.

    методичка, добавлен 25.12.2014

  • Рассмотрение системы линейных уравнений. Характеристика наиболее мощного и универсального инструмента для нахождения решения любой системы линейных уравнений - метода Гаусса (последовательного исключения неизвестных). Примеры решений для чайников.

    задача, добавлен 24.11.2014

  • Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.

    контрольная работа, добавлен 23.06.2020

  • Систематизация знаний о системах линейных уравнений. Метод  Гаусса как наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Метод удобнее применять на расширенной матрице. Пример решения уравнений.

    презентация, добавлен 17.05.2023

  • Нормальный закон на плоскости. Вероятность попадания в прямоугольник со сторонами, параллельными главным осям рассеивания. Эллипсы рассеивания, приведение нормального закона к каноническому виду. Вероятность попадания в область произвольной формы.

    курсовая работа, добавлен 13.08.2015

  • Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.

    учебное пособие, добавлен 25.11.2012

  • Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.

    лекция, добавлен 15.11.2010

  • Сумма элементов матрицы по строкам. Алгоритм нахождения обратной квадратной матрицы и ее определителя. Решение системы линейных уравнений методом Крамера и Гаусса. Построение математической модели экономического процесса и определение плана производства.

    контрольная работа, добавлен 21.05.2013

  • Умножение элементов строки (столбца) матрицы. Понятие системы линейных уравнений и ее решения. Коэффициенты системы и свободные члены. Теорема Кронекера-Капелли. Линейная комбинация базисных столбцов матрицы. Условия существования решения системы.

    лекция, добавлен 15.09.2017

  • Матрицы и действия над ними. Вычисление определителя и транспонирование матрицы. Технология выполнения операций в среде Excel. Вычисление обратной матрицы с помощью функции МОБР. Решение систем линейных уравнений методом Жордана-Гаусса. Свойства вектора.

    методичка, добавлен 25.06.2013

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Вычисление элементов матрицы суммы. Определитель третьего порядка и правило треугольников. Решение системы линейных уравнений методом Гаусса. Косинус угла между векторами. Уравнение плоскости, проходящей через точку. Объем тетраэдра с заданными вершинами.

    контрольная работа, добавлен 30.09.2013

  • Ознакомление с действиями над матрицами. Рассмотрение и характеристика свойств определителей (детерминант). Изучение сущности алгебраического дополнения минора матрицы. Анализ условий применения матричного метода решения систем линейных уравнений.

    контрольная работа, добавлен 12.10.2016

  • Методы одномерной безусловной оптимизации. Нахождение промежутка локализации точки минимума методом начального поиска промежутка. Итерационные методы решения задач безусловной оптимизации. Приведение задачи линейного программирования к каноническому виду.

    контрольная работа, добавлен 08.08.2009

  • Определение уравнения плоскости, проходящей через точку перпендикулярно вектору. Решение системы линейных уравнений по формулам Крамера, матричным способом и методом Гаусса. Решение задач линейного программирования модифицированным симплексным методом.

    контрольная работа, добавлен 11.03.2012

  • Основные формулы, используемые в методе Крамера и методе обратной матрицы при решении системы линейных алгебраических уравнений. Решение СЛАУ с помощью MS Excel. Ввод матрицы коэффициентов и вектора свободных коэффициентов. Определение обратной матрицы.

    лабораторная работа, добавлен 11.03.2011

  • Определения и пример нахождения собственного значения и собственного вектора матрицы. Системы линейных алгебраических уравнений. Методы Зейделя и Якоби для решения систем линейных алгебраических уравнений. Программа на C++ для решения СЛАУ методом Якоби.

    курсовая работа, добавлен 23.04.2011

  • Правила решения систем линейных алгебраических уравнений. Понятие ранга матрицы. Преобразования матрицы, в результате которых сохраняется их эквивалентность. Классический метод решения СЛАУ. Теорема об эквивалентности при элементарных преобразованиях.

    контрольная работа, добавлен 16.01.2015

  • Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.

    контрольная работа, добавлен 29.09.2013

  • Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.

    реферат, добавлен 30.10.2010

  • Использование метода присоединенных G-структур в сочетании с методом инвариантного исчисления Кошуля. Формулы преобразования структурного и виртуального тензоров эрмитовой структуры относительно голоморфно 2-геодезических преобразований линейных типов.

    автореферат, добавлен 17.12.2017

  • Система m линейных уравнений с n переменными при условии равенства всех свободных членов нулю. Бесконечное множество решений при условии неравенства определителя нулю. Приведение нулевого столбца свободных членов по формуле Крамера. Поиск решения.

    презентация, добавлен 21.09.2013

  • Порядок подготовки задачи к применению симплекс-метода: ее приведение к каноническому виду, определение начального неотрицательного базисного решения. Общая характеристика метода и демонстрация его применения на примере. Структура и содержание таблиц.

    презентация, добавлен 21.09.2017

  • Понятие таблиц чисел, так называемых матриц, с помощью которых удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи. Определение линейного преобразования.

    контрольная работа, добавлен 14.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.