Метод Хука-Дживса
Сущность метода Хука-Дживса для определения свойств и параметров функций, его отличие от других методов данного типа. Алгоритм работы и этапы выполнения метода. Решение задачи минимизирования функции без учета ограничений. Модификации метода Хука-Дживса.
Подобные документы
Рассмотрение сущности метода наименьших квадратов и линейной парной регрессии. Вывод формул для нахождения коэффициентов линейной парной регрессии. Аппроксимация функций с помощью метода наименьших квадратов. Нахождение параметров линейной функции.
курсовая работа, добавлен 26.02.2020Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.
контрольная работа, добавлен 14.12.2014Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.
курсовая работа, добавлен 18.08.2009Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.
курсовая работа, добавлен 09.06.2014- 30. Симплекс-метод
Алгоритм симплексного метода решения задач линейного программирования. Пример решения задачи симплексным методом. Вычисление оценки разложений векторов условий по базису опорного решения. Рассмотрение причин использования двухфазного симплекс-метода.
лекция, добавлен 28.03.2020 Основные недостатки существующих методов определения фильтрационных параметров. Метод модулирующих функций (М-метод), его сущность. Определение постоянных и переменных коэффициентов в дифференциальных уравнениях. Типичный график модулирующей функции.
статья, добавлен 10.07.2013Биография великого греческого математика Эратосфена. Его знаменитые работы в математике, географии, геометрии и основание научной хронологии. Сущность метода "Решето Эратосфена". Алгоритм и принцип работы метода отсеивания простых чисел от составных.
презентация, добавлен 12.05.2016Рассмотрение метода Дайсона в общем виде. Главная особенность использования троичной системы счисления. Характеристика алгоритма решения для случая. Обоснование оптимальности метода Дайсона. Основной анализ определения фальшивой монеты и ее типа.
презентация, добавлен 18.02.2020Описание методов построения траектории объекта наблюдения. Анализ точности определения параметров движения по методу N-пеленгов и N-полиномов. Описание свойств метода расчета траектории нелинейно движущегося объекта с использованием угломерной информации.
статья, добавлен 29.04.2017Преимущества, характеристика и специфика метода Монте-Карло, его применение в нанотехнологиях и в вычислении интегралов. Способ усреднения подынтегральной функции, оценка погрешности метода Монте-Карло и решение интегральных уравнений второго рода.
курсовая работа, добавлен 02.05.2015Анализ самоорганизация регрессионных моделей или метода группового учета аргументов, который относится к детерминированным методам. Рассмотрение математической постановки задачи классификации. Ознакомление с процессом решения задачи классификации.
статья, добавлен 29.07.2016Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015Сущность и принципы использования метода Ньютона, его геометрическая интерпретация, примеры применения на практике, алгоритм решения задач. Механизм решения систем нелинейных алгебраических уравнений. Содержание и значение методов спуска и итерации.
реферат, добавлен 31.10.2013Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.
курсовая работа, добавлен 28.06.2012Использование свойств конечных сумм, для получения модификации неравенств Чебышёва. Характеристическое свойство арифметической прогрессии. Формулы суммирования, выводимые способом математической индукции. Сущность метода неопределённых коэффициентов.
курсовая работа, добавлен 28.05.2014Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Описание метода Гаусса. Рассмотрение алгоритма на примере системы уравнений. Необходимое и достаточное условие применимости метода. Анализ прямого и обратного хода, построение схемы единственного деления. Контроль и точность вычислений в уравнениях.
реферат, добавлен 31.05.2009Число пи как отношение длины окружности, как траектории движения материальной точки вокруг силового центра, к ее диаметру, история его определения. Сущность и главные принципы физического метода определения данного численного значения, его обоснование.
статья, добавлен 20.10.2013Метод Дайсона, использование троичной системы счисления. Решение задачи на выявление фальшивой монеты. Алгоритм решения для случая m=1/2(3n-3). Обоснование оптимальности найденного решения. Особенности решения задач с применением метода Дайсона.
реферат, добавлен 20.02.2020Формулировка задачи линейного программирования. Особенности задачи линейного программирования, система ограничений которой задана в виде неравенств. Графический метод решения задач данного типа. Определение минимального значения линейной функции.
реферат, добавлен 11.06.2014Построение функции принадлежности для определения важности дисциплины для будущей специальности с помощью применения метода парных сравнений. Использование участия специалистов в анализе и решении проблемы при применении метода экспертного опроса.
лабораторная работа, добавлен 06.12.2015Методика применения метода конечных элементов к решению уравнения теплопроводности. Простая процедура учета граничных условий задачи. Сравнение затрат машинного времени и погрешности расчетов при использовании различных видов элементов и функций формы.
статья, добавлен 30.10.2016Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.
лабораторная работа, добавлен 06.10.2022Недостатки геометрической интерпретации в решении задач линейного программирования. Принципиальные отличия вычислительных методов решения задач. Сущность симплекс–метода. Примеры решения задач линейного программирования с использованием симплекс-метода.
презентация, добавлен 04.01.2018Решение игры с природой по критериям Гурвица, Лапласа, Сэвиджа и Вальда. Использование метода Брауна и симплекс-метода для определения оптимальной стратегии игрока и максимального значения выигрыша. Расчет цены игры, ее проверка на наличие седловой точки.
контрольная работа, добавлен 03.05.2013