Цепные дроби

Бесконечные и конечные цепные дроби. Приближение действительного числа рациональными дробями с заданным ограничением для знаменателя. Квадратические иррациональности и периодические цепные дроби. Представление действительных чисел цепными дробями.

Подобные документы

  • Выявление вида неопределенности и вычисление предела функций. Формулы производной степени и дроби функции, исчисление производной. Определение непрерывной числовой прямой и исследование функции, её критические точки. Вычисление неопределенных интегралов.

    контрольная работа, добавлен 20.01.2013

  • Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.

    лекция, добавлен 09.07.2015

  • Характеристика истории происхождения аликвотных дробей и их применения в Древнем Египте. Примеры применения аликвотных дробей в жизни. Описание формул аликвотных дробей. Анализ гипотезы Эрдёша-Страуса. Примеры решения задач с помощью аликвотных дробей.

    реферат, добавлен 06.02.2017

  • Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.

    курсовая работа, добавлен 18.05.2016

  • Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.

    учебное пособие, добавлен 15.09.2012

  • Рассмотрение тригонометрического отображения действительных чисел. На основании этого получение элементарного доказательства последней (великой) теоремы П. Ферма. Вывод тригонометрических выражений. Исследование геометрической интерпретации функции.

    статья, добавлен 26.06.2018

  • Доказательство бесконечности регулярных простых чисел. Делимость числителей чисел Бернулли. Делимость чисел при сравнении по ненулевому рациональному модулю. Частные случаи делимости целых и дробных чисел. Простые числа в арифметических прогрессиях.

    статья, добавлен 03.03.2018

  • Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.

    курсовая работа, добавлен 12.11.2018

  • Вещественная функция, гармоническая в круге. Первоначальное изучение граничного поведения. Формула Коши-Грина, обобщение в случае единичного круга. Интегральное представление гармонических функций. Бесконечные числовые произведения чисел, их сходимость.

    курс лекций, добавлен 24.09.2017

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Найпростіші застосування комплексних чисел. Спосіб Гамільтона введення комплексних чисел. Застосування комплексних чисел в геометрії. Формули Ейлера і Муавра та їх застосування. Комплексні числа в геометричних побудовах. Комплексні числа і центр мас.

    реферат, добавлен 10.01.2009

  • Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.

    разработка урока, добавлен 08.06.2019

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.

    контрольная работа, добавлен 22.01.2011

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.

    реферат, добавлен 07.10.2010

  • Геометрическое представление комплексного числа. Модуль и аргумент в математике. Формула Муавра и правила извлечения корней. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Рассмотрение функций комплексного переменного.

    реферат, добавлен 15.10.2021

  • История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.

    реферат, добавлен 17.06.2018

  • В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.

    статья, добавлен 26.01.2020

  • История теории алгоритмов. Определение, свойства и типы алгоритмов. Действия с обыкновенными дробями. Алгоритмы в изучении различных школьных предметов. Разложение на простые множители. Арифметические действия с положительными и отрицательными числами.

    реферат, добавлен 02.12.2013

  • Представление целых чисел с помощью письменных знаков. Характеристика аспектов биномиальной теоремы. Методика распределения простых чисел. Рассмотрение рациональных чисел как средства измерения. Теорема Лиувилля и конструирование трансцендентных чисел.

    книга, добавлен 25.11.2013

  • История развития комплексных чисел. Соглашение о комплексных числах. Сложение, деление и вычитание комплексных чисел, их геометрическое изображение. Модуль и аргумент комплексного числа. Геометрический смысл сложения и вычитания комплексных чисел.

    доклад, добавлен 21.10.2011

  • Очерк зарождения и эволюции математических действий с числами, давших опору системе комплексных чисел и арифметике, как науке. Изучение особенностей геометрических выражений чисел. Обзор основных свойств дробей и операции над рациональными числами.

    курсовая работа, добавлен 05.10.2013

  • Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.

    реферат, добавлен 27.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.