Векторна алгебра і деякі її застосування

Поняття векторів, їх види, лінійна залежність, коллінеарність і компланарність, визначення координат. Обчислення скалярних добутків. Приклади застосування векторів до задач мікроекономіки. Прямокутна декартова система координат на площині та у просторі.

Подобные документы

  • Кривые и поверхности 2 порядка. Понятие канонических эллипсов, гиперболы, параболы и расчет их эксцентриситета. Кривые, заданные параметрическими уравнениями. Определение полярной системы координат и положение кривых в полярной системе координат.

    методичка, добавлен 12.12.2014

  • Геометрические и аналитические представления mn параметров и основные соотношения. Упорядоченные множества точек в системе координат. Методика перемещения точки по кроне дерева ПТ. Пифагоровы треугольники в пограничных областях координатной системы.

    монография, добавлен 10.02.2011

  • Поняття подвійного інтегралу, достатні умови його існування та головні властивості. Основні правила обчислення та побудова графіків. Особливості заміни змінних у подвійному та потрійному інтегралів. Основні правила їх застосування до задач механіки.

    курсовая работа, добавлен 18.05.2013

  • Дослідження аспектів теорії баз в гільбертовому просторі із застосуванням методів їх нестандартного аналізу. Поняття колостандартної бази і її тіні. Встановлення критерію колостандартності вектора і оператора в термінах їхніх координат і матриць.

    автореферат, добавлен 12.02.2014

  • Матриці та дії з ними. Визначники квадратних матриць, методи їх обчислення та властивості. Загальна теорія систем лінійних алгебраїчних рівнянь. Елементи векторної алгебри та аналітичної геометрії. Теорії границь функції однієї і багатьох змінних.

    курс лекций, добавлен 30.10.2011

  • Вычисление прямоугольных координат межевых пунктов. Прямоугольные координаты дополнительных пунктов и высоты. Преобразование прямоугольных координат Гаусса-Крюгера из одной зоны в другую. Порядок вычисления длин сторон и площади съемочной трапеции.

    курсовая работа, добавлен 20.04.2015

  • Розгляд векторів як напрямлених відрізків. Особливості означення лінійного простору. Множина розв’язків однорідної системи математичних рівнянь. Лінійно залежні та незалежні системи векторів. Елементарні перетвореннями рядків системи лінійних рівнянь.

    лекция, добавлен 05.05.2017

  • Сутність понять вектора і скаляра. Геометричні та фізичні вектори, їх зображення та позначення векторної величини. Означення колінеарних і компланарних векторів, лінійні операції над ними. Рівність, модуль, добуток; властивості суми і різниці векторів.

    практическая работа, добавлен 08.11.2017

  • Поняття еквівалентних перетворень системи векторів, операції над матрицями та їхні властивості. Обчислення оберненої матриці елементарними перетвореннями. Загальні відомості про системи лінійних рівнянь, особливості та розрахунок діагональної матриці.

    контрольная работа, добавлен 16.07.2017

  • Поняття про лінію та її рівняння, їх різновиди та принципи формування, напрямки дослідження. Умови паралельності та перпендикулярності прямих. Загальні рівняння площини та його дослідження. Види рівнянь прямої у просторі. Кут між прямою і площиною.

    лекция, добавлен 08.08.2014

  • Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.

    курс лекций, добавлен 17.01.2014

  • Прямі та обернені теореми в банаховому просторі застосовано до задач наближення цілими функціями у просторах. Характеристика початкових векторів задачі Коші нескінченної гладкості класів Жевре в термінах швидкості збіжності інтегральної нев’язки задачі.

    автореферат, добавлен 25.02.2015

  • Зміст напрямків сучасної науки про геометричні методи зображення просторових форм на площині. Поняття центрального і паралельного проектування. Проекції точок, прямих і паралельних фігур у трикартинній системі координат. Креслення багатогранників.

    методичка, добавлен 22.07.2014

  • Произвольный электростатический или магнитный скалярный потенциал как функция пространственных координат. Уравнение Лапласа. Цилиндрическая система координат в виде ряда Фурье. Метод разделения переменных для определения распределений потенциалов.

    реферат, добавлен 12.02.2013

  • Ряди Тейлора і Маклорейна. Приклади розкладу функцій в ряди. Біномінальні, степеневі, числові ряди. Обчислення означених інтегралів за допомогою рядів. Інтегрування диференціальних рівнянь та обчислення елементарних функцій за допомогою рядів.

    отчет по практике, добавлен 02.03.2010

  • Поняття геометричного місця точок у просторі. Способи розташування прямих у просторі. Задача на порівняння кривих другого порядку і деяких поверхонь обертання як геометричних місць точок, що мають одну і ту ж властивість на площині і в просторі.

    контрольная работа, добавлен 23.11.2017

  • Дослідження наборів ортопроекторів в гільбертовому просторі. Лінійна комбінація скалярних операторів. Розрахунок суми коефіцієнтів вектора. Пошук зображення лінійного співвідношення. Структурні теореми для наборів операторів із заданими спектрами.

    автореферат, добавлен 27.07.2015

  • Уравнение прямой с направляющим и нормальным вектором. Кривые второго порядка, полярная система координат. Определение терминов "гипербола", "парабола" и "эллипс". Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

    презентация, добавлен 21.09.2017

  • Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.

    учебное пособие, добавлен 06.02.2011

  • Означення рангу матриці. Означення мінору k-го порядку матриці. Теорема про ранг матриці. Правила обчислення рангк матриці. Приклади розв’язання завдань. Самостійна частина роботи. Опис і текст програми. Приклад роботи програми. Контрольні приклади.

    курсовая работа, добавлен 15.09.2008

  • Ознайомлення із теоремою Банаха. Означення та математичний запис просторів метричного, лінійного, R(n) n-мірних векторів, R(nхn) квадратних матриць. Розгляд поняття наближених чисел, визначення їх граничних похибок суми, різниці, добутку та ділення.

    реферат, добавлен 13.06.2010

  • Дослідження застосування звичайних комплексних, дуальних і подвійних чисел, аналіз різниці між ними. Комплексне обґрунтування сутності поняття "комплексні числа". Застосування до вивчення геометричних перетворень та розв’язування геометричних задач.

    курсовая работа, добавлен 19.04.2017

  • Особливість засвоєння учнями змісту теореми, що виражає властивість бісектриси трикутника та її доведення. Застосування формулювання теореми до розв’язування задач на обчислення відрізків у трикутнику. Дослідження метричних співвідношень в колі.

    конспект урока, добавлен 10.09.2018

  • Основні напрямки сучасної теорії зображень. Роль теорії матричних задач А.В. Ройтера. Обчислення матричної алгебри Aуслендера для однієї задачі про подібність пари матриць з деякими природними співвідношеннями. Формулювання класифікаційної теореми.

    статья, добавлен 04.02.2017

  • Поняття, основні властивості визначників та їх обчислення. Сутність алгебраїчного доповнення Мінора. Поняття матриці, визначення її другого порядку, та властивості оберненої матриці. Математичний аналіз та функції системи лінійних алгебраїчних рівнянь.

    курсовая работа, добавлен 03.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.