Математическое моделирование нелинейной задачи теплопроводности для двухсвязной пластинки переменной толщины
Расчет температур с учетом неоднородности теплофизических свойств материала пластинки переменной толщины. Использование переменной Кирхгофа для линеаризации краевой задачи теплопроводности. Сравнение полей температур узлов методом конечных элементов.
Подобные документы
Изучение свойств определенного интеграла. Описание точных методов их вычисления по формулам Ньютона-Лейбница, интегрирования по частям и путем замены переменной в определенном интеграле. Описание приближенных методов вычисления определённых интегралов.
реферат, добавлен 01.12.2016Доказательство теоремы существования и единственности решения аналога задачи Франкля для уравнения смешанного параболо-гиперболического типа третьего порядка. Представление теоремы об однозначной разрешимости нелокальной внутренне-краевой задачи.
автореферат, добавлен 27.03.2018Роль гипотез при разработке моделей. Их свойства: неполнота, адекватность, простота и потенциальность. Возможные виды задач, появляющиеся при математической постановке задачи моделирования, проверка корректности. Обоснование выбора метода решения задачи.
презентация, добавлен 07.06.2016Вычисление суммы и разности заданных квадратных матриц, произведения матрицы и числа. Расчет детерминантов второго, третьего и четвертого порядка и поверка вычислений. Определение переменной в системе линейных уравнений с помощью матричного метода.
задача, добавлен 31.07.2011Задача о вариационном неравенстве. Необходимость разработки теории краевых задач с разрывными по фазовой переменной нелинейностями. Некоэрцитивные вариационные неравенства с непрерывными и многозначными нелинейностями. Условие Ландесмана-Лазера.
автореферат, добавлен 10.12.2013Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.
учебное пособие, добавлен 08.09.2011Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.
конспект урока, добавлен 18.04.2016Понятие производной, её геометрический смысл. Правила дифференцирования, производная сложной функции. Дифференциал функции, логарифмическое дифференцирование, правило Лопиталя. Производные высших порядков и их применение для исследования свойств функций.
методичка, добавлен 27.09.2012Решение первой краевой задачи для вырождающегося дифференциального уравнения с частными производными при заданных условиях. Нахождение компонентов решения задачи, интегрирование неравенства. Области определения данной функции, ее частные случаи.
статья, добавлен 31.05.2013Получение достаточных условий разрешимости краевой задачи для обыкновенного дифференциального уравнения третьего порядка в случае резонанса. Рассмотрение периодической краевой задачи для обыкновенного дифференциального уравнения. Ядро и образ оператора.
статья, добавлен 26.04.2019Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.
курс лекций, добавлен 23.10.2013Характеристика решения первой краевой задачи конечно-разностным и методом прогонки. Их особенности, описание и специфика применения к конкретному случаю. Код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.
курсовая работа, добавлен 01.12.2009Вариационное исчисление решения задач, связанных с минимизацией функционала по уравнению Эйлера. Минимизация заданного функционала по методу Ритца. Графики приближения. Приближённое решение краевой задачи для уравнения Эйлера методом конечных разностей.
курсовая работа, добавлен 23.04.2011Cоздание производительного, универсального и простого в реализации метода численного расчета нечетких уравнений разного типа. Моделирование конкретных физиологических систем, включающее анализ погрешности результатов и их чувствительности к параметрам.
автореферат, добавлен 25.07.2018Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
курсовая работа, добавлен 10.07.2017Определение приведенного квадратного уравнения и неполного квадратного уравнения, алгоритмы их решения. Расчет формулы дискриминанта, корней квадратного уравнения и теоремы Виета. Методы решения: разложение на множители, введение новой переменной и др.
конспект урока, добавлен 08.01.2016Описание свойств объясняющих переменных в линейной эконометрической модели. Статистическая информация о реализациях переменной. Вектор и матрица коэффициентов корреляции. Исключение квазинеизменных переменных. Метод показателей информационной ёмкости.
презентация, добавлен 19.01.2015Решение задачи динамики, состоящей в восстановлении неизвестных граничных управлений, порождающих наблюдаемое движение динамической системы. Описание динамической системы как краевой задачи для уравнения с частными производными гиперболического типа.
статья, добавлен 15.01.2019Разработка математических моделей механического поведения гибких броневых композитных материалов при квазистатических воздействиях, методика реализации разработанных моделей. Численный алгоритм для решения задачи ударно-волнового деформирования.
автореферат, добавлен 11.03.2014- 95. Скалярное поле
Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.
лекция, добавлен 08.05.2015 Математическое моделирование и математизация знаний. Использование математических моделей. Компьютеры в математическом моделировании. Новые возможности математики. Аналитическое исследование математических моделей. Этапы вычислительного эксперимента.
контрольная работа, добавлен 27.12.2013Описание особенностей непрерывных частных производных заданной функции. Определение полного дифференциала данной функции. Изучение формул, когда х и у были функциями одной переменной. Расчет коэффициентов при дифференциалах независимых переменных.
реферат, добавлен 26.04.2014- 98. Схема Горнера
Схема Горнера как алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Решение уравнений высшей степени (деление многочлена с помощью схемы Горнера). Ее использование для деления многочлена на бином.
презентация, добавлен 18.12.2018 Построение модели теплового баланса для мезосферы и нижней термосферы. Разработка алгоритма численного решения уравнения теплового баланса для нейтральных компонент. Анализ особенностей метода преобразования уравнений непрерывности и теплопроводности.
автореферат, добавлен 27.11.2017Основные определения, понятия, свойства криволинейного интеграла. Определение массы кривой с переменной линейной плотностью. Расчет площади цилиндрической поверхности. Притяжение материальной точки материальной кривой. Вычисление длины всей кривой.
курсовая работа, добавлен 21.09.2015