Взвешенный метод наименьших квадратов
Вектор оценок параметров регрессионного уравнения. Классическая оценка ковариационной матрицы метода наименьших квадратов, оценка параметров. Разработка программного обеспечения. Дисперсия ошибки. Однородные группы наблюдений, формула Стерджесса.
Подобные документы
Сущность статистических прогнозов и задачи экономико-статистического прогнозирования. Основные методы прогнозирования в статистике: наименьших квадратов, наименьших квадратов с весами, экспоненциального сглаживания, авторегрессии. Построение прогноза.
реферат, добавлен 08.05.2011Наилучшая линейная процедура получения оценок параметров уравнения и условия, при которых эта процедура дает несмещенные и эффективные оценки, сформулированная в теореме Гаусса-Маркова. Вычисление дисперсии (ковариационной матрицы) параметров модели.
презентация, добавлен 15.10.2014Основы статистического метода исследования. Детерминированная теория ошибок и дисперсии искомых оценок. Применение принципа наименьших квадратов в экспериментальной науке. Выведение погрешности наблюдений из распределения среднего арифметического.
статья, добавлен 22.02.2019Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
доклад, добавлен 19.11.2012Основные понятия и определения планирования и организации эксперимента. Метод наименьших квадратов и факторный эксперимент. Дисперсионный анализ и построение теоретической функции методом квадратов. Регрессионная зависимость эксперимента, её анализ.
курсовая работа, добавлен 27.09.2011Исследование закономерностей и связей между двумя дискретными случайными величинами X и Y, при помощи статистических методов. Выборочная дисперсия и выборочные числовые параметры. Расчет коэффициента корреляции. Регрессия и метод наименьших квадратов.
курсовая работа, добавлен 10.12.2012Проекционный метод Галеркина, сущность метода коллокаций и наименьших квадратов, их преимущества и недостатки. Решение краевой задачи различными методами. Оценка погрешности применения данных методов относительно точного решения в конкретных точках.
дипломная работа, добавлен 07.11.2012Поиск выборочных ковариации и коэффициента корреляции. Доверительный интервал для математического ожидания величины. Оценка параметров модели методом наименьших квадратов. Тестирование близости эмпирического распределения остатков моделей к нормальному.
контрольная работа, добавлен 10.11.2017Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Анализ динамики роста стоимости основных рабочих фондов. Расчёт парного коэффициента корреляции. Проверка значимости с помощью статистики Стьюдента. Вычисление оценки неизвестных параметров уравнения парной регрессии по методу наименьших квадратов.
контрольная работа, добавлен 15.03.2017Формулировка теоремы, утверждающей, что тройки простых чисел составляют бесконечное множество. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов. Функция натурального аргумента, оценка погрешностей.
статья, добавлен 26.01.2019Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
презентация, добавлен 23.04.2015Анализ данных о потребительских расходах на душу населения. Расчёт среднего коэффициента эластичности. Оценка ошибки аппроксимации. Построение таблицы распределения Фишера. Поиск значения общей площади вторичного жилья методом наименьших квадратов.
контрольная работа, добавлен 07.04.2016Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.
учебное пособие, добавлен 24.10.2012Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.
презентация, добавлен 20.01.2015Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.
шпаргалка, добавлен 22.04.2015Временной ряд и его основные элементы, закономерности автокорреляция уровней и выявление структуры. Моделирование тенденции и метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Аддитивная и мультипликативная модели временного ряда.
реферат, добавлен 07.09.2015Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.
контрольная работа, добавлен 29.03.2013Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.
презентация, добавлен 13.07.2015Значение и применение теории бесконечного множества простых чисел. Основы установления сравнительной количественной оценки множеств. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов, численными методами.
статья, добавлен 26.01.2019Нахождение двух наименьших положительных корней уравнения. Рассмотрение метода деления отрезка пополам. Описание программного алгоритма этого метода. Определение значения корней с необходимой точностью. Характеристика метода итераций, пример решения.
лабораторная работа, добавлен 24.11.2014Решение экстремальных задач в математической статистике. Методы наименьших квадратов, главных компонент. Выборочные оценки параметров зависимости нечисловых данных. Рассмотрение теорем, касающихся асимптотики решений экстремальных статистических задач.
статья, добавлен 19.12.2017Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015