Числа Фибоначчи и Золотое сечение
Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.
Подобные документы
Сравнение числа Пи с другими математическими величинами и их визуализация. Изучение методов использования компьютерных систем для интерпретации математических величин. Анализ возможности использования среды КСС "Demomod" при визуализации моделей числа.
статья, добавлен 22.01.2017Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.
презентация, добавлен 05.10.2015Условия и особенности применения элементарной алгебры и тригонометрии в ряде случаев при решении задач на вычисление применение векторов. Методика составления плана решения, а также требования к данному процессу. Выделение неколлинеарных векторов.
реферат, добавлен 18.06.2015- 79. Дійсні числа
Раціональні числа як нескінченні десяткові періодичні дроби. Особливості основних теорем для розширення множини раціональних чисел. Ірраціональне число як нескінченний неперіодичний десятковий дріб. Модуль дійсного числа, характеристика його властивостей.
курсовая работа, добавлен 15.06.2016 - 80. Комплексні числа
Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.
контрольная работа, добавлен 16.07.2017 Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.
курсовая работа, добавлен 14.06.2017- 82. Золотое сечение
Пропорциональное деление отрезка на неравные части. Золотое сечение в математике, анатомии человеческого тела, скульптуре, архитектуре, живописи, природе, поэзии и музыке. Форма золотого прямоугольника. Геометрическое изображение золотой пропорции.
презентация, добавлен 16.05.2013 Анализ материала, нужного учителю математики для реализации межпредметных связей математики и технологии. Изучение методов повышения качества математического образования учащихся, применения их математических знаний к решению задач повседневной практики.
статья, добавлен 06.04.2019Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.
статья, добавлен 26.04.2019Определение процента (части) от числа. Определение числа по его части, выраженной в процентах. Процентное сравнение чисел (величин). Примеры изменения цены при повышении на 25 % и понижении на 25 %. Задачи на "усыхание" по теме "Смеси, сплавы, растворы".
презентация, добавлен 06.11.2014Золотое сечение как деление отрезка на две части таким образом, что большая его часть является средней пропорциональной между всем отрезком и меньшей его частью. Особенности использования данного принципа в математике и других сферах современной науки.
реферат, добавлен 11.01.2015История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014Число и сумма делителей данной цифры. Простые числа Мерсенна и их наибольшее известное значение. Определение совершенных и дружественных числовых выражений. Особенность формирования доказательства Евклида. Характеристика графиков и свойств функций.
курсовая работа, добавлен 06.05.2015Рассмотрение теоретико-множественного истолкования натурального числа и понятия преемственности. История формирования понятия натурального числа в начальной школе. Педагогические технологии формирования понятия натурального числа в современной школе.
реферат, добавлен 12.11.2016- 90. Число е
Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа, добавлен 15.05.2011 Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.
реферат, добавлен 08.12.2017Способы решения геометрических задач, рассчитанных на применение аналитических методов. Тенденции использования элементов алгебры и математического анализа при их решении. Методы, приемы и подходы к решению задачи, содержащей буквенные данные (параметры).
статья, добавлен 23.06.2018- 93. Осевая симметрия
Изучение свойств преобразований плоскости. Примеры решения задач с использованием преобразований плоскости. Анализ содержания школьных учебников геометрии по данной тематике. Возможности применения преобразований плоскости к решению задач планиметрии.
курсовая работа, добавлен 09.06.2013 Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.
реферат, добавлен 30.11.2015Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.
курсовая работа, добавлен 18.05.2016Обзор теоремы Чебышева о распределении простых чисел, рассматриваются функции, приближающие простые числа, а также вводится новая функция, достаточно хорошо приближающая простые числа. Приводится обзор результатов по распределению простых чисел.
статья, добавлен 20.05.2017Исследование неоднородности свойств чётных составных чисел. Универсальное правило определения делимости. Содержание алгоритма нахождения простых чисел. Суммирование и вычитание цифр. Способы определения делимости нечетного числа с окончаниями 1, 3, 7.
реферат, добавлен 29.09.2012Понятие простого числа и арифметической прогрессии. Обоснование существования многого количества арифметических прогрессий, образованных из разных простых чисел. Исследование простых чисел в вопросе их принадлежности к арифметической прогрессии.
статья, добавлен 17.02.2019Роль числа в познании и конституировании мира. Число как основное понятие математики. Понятие натурального числа. Число как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере, соразмерного и гармоничного.
доклад, добавлен 11.01.2012Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.
курсовая работа, добавлен 24.04.2011