Параллельные технологии в реализации методов решения дифференциальных уравнений

Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.

Подобные документы

  • Прогнозы протекания процессов в областях науки и техники. Разработка и использование методов прогноза и коррекции. Алгоритм решения систем линейных дифференциальных уравнений первого порядка пятиточечным методом прогноза и коррекции Адамса-Башфорта.

    курсовая работа, добавлен 03.11.2010

  • Рассмотрение методов исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов). Численное решение дифференциальных уравнений в частных производных параболического типа.

    курс лекций, добавлен 29.11.2020

  • Приближенное решение определенного интеграла от непрерывной функции, расчет погрешностей. Способы решения дифференциальных уравнений. Абсолютная и условная сходимость числовых и степенных рядов. Интервал, свойства и радиус сходимости степенного ряда.

    контрольная работа, добавлен 06.06.2015

  • Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.

    курсовая работа, добавлен 08.10.2013

  • Общая характеристика краевых задач Штурма-Лиувилля. Знакомство с особенностями и назначением теоремы Стеклова. Анализ свойств собственных значений и собственных функций задачи Штурма-Лиувилля. Рассмотрение обыкновенных дифференциальных уравнений.

    контрольная работа, добавлен 02.12.2013

  • Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.

    контрольная работа, добавлен 12.12.2012

  • Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.

    дипломная работа, добавлен 21.01.2011

  • Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.

    курсовая работа, добавлен 12.12.2010

  • Метод "частичных" областей для решения уравнений с параметрами. Показательные и логарифмические уравнения и неравенства с параметрами. Освоение методов решения вычислительных и логических задач. Поиск решения линейных и квадратных уравнений в общем виде.

    дипломная работа, добавлен 20.05.2018

  • Методы решения нелинейных и дифференциальных уравнений и интерполяции функций. Численные методы решения некоторых математических и инженерных задач, программное обеспечение, их реализующее. Использование среды математического моделирования Matlab.

    курсовая работа, добавлен 09.02.2019

  • Ознакомление с процессом приближенного решения с помощью степенных рядов. Рассмотрение численного решения методом Эйлера и Рунге-Кутты. Исследование порядка вычисления абсолютной и относительной погрешности. Изучение совместного графического решения.

    контрольная работа, добавлен 15.01.2018

  • Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.

    курсовая работа, добавлен 22.02.2019

  • Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.

    лабораторная работа, добавлен 10.10.2015

  • Иван Георгиевич Петровский - известнейший и талантливейший математик XX века: талантливый организатор и общественный деятель, автор современной теории дифференциальных уравнений, многих научных работ которые используются в разных областях математики.

    реферат, добавлен 05.03.2009

  • Поиск равновесных решений круговой ограниченной задачи четырёх тел, сформулированной на основе треугольных решений Лагранжа, и анализ их устойчивости в смысле Ляпунова. Порядок выведения функциональных уравнений, определяющих равновесные конфигурации.

    автореферат, добавлен 19.08.2018

  • Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.

    презентация, добавлен 07.05.2020

  • Ознакомление с задачами, решаемыми с помощью вспомогательных вариационных задач. Рассмотрение процесса решения задачи о критических оборотах вала. Исследование и анализ зависимости параметра квадратичной вариационной задачи от числа краевых условий.

    статья, добавлен 26.04.2019

  • Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.

    статья, добавлен 30.10.2016

  • Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.

    курсовая работа, добавлен 07.11.2020

  • Применение аналитических математических методов при моделировании процессов в науке и технике. Решение практических задач по баллистике методами Эйлера, Рунге-Кутта и Адамса. Учёт локальных особенностей искомой функции дифференциального уравнения.

    лекция, добавлен 21.09.2017

  • Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.

    курсовая работа, добавлен 20.01.2013

  • Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.

    курсовая работа, добавлен 19.01.2016

  • Изучение квантильных дифференциальных уравнений Пфаффа, которые строятся на основе двухмерных условных квантилей многомерных вероятностных распределений. Исследование основных вероятностных свойств интегральных многообразий максимальной размерности.

    статья, добавлен 31.05.2013

  • Рассмотрение способа нахождения общего вида решения системы рекуррентно связанных дифференциальных уравнений первого порядка с линейной зависимостью в правой части. Особенности использования полученной прямой аналитической зависимости в сложных моделях.

    статья, добавлен 18.12.2017

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.

    реферат, добавлен 29.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.