Риманова геометрия
Научно-исследовательские труды Б. Римана. Риманова геометрия – раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, с дополнительной структурой, римановой метрикой. Идея математического пространства.
Подобные документы
Биография Л. Эйлера - автора работ по математическому анализу, дифференциальной геометрии, теории чисел, приближенным вычислениям. Научные труды Л. Эйлера: ряд Эйлера-Маклорена, задача о колебании струны, волновое уравнение. Обобщение теоремы Ферма.
контрольная работа, добавлен 16.06.2019Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.
учебное пособие, добавлен 14.03.2014Изучение сфер жизни человека, в которых присутствует математика. Связь геометрии с повседневной жизнью человека. "Золотое сечение" в окружающей действительности, его применение в архитектуре и произведениях искусства. История возникновения геометрии.
презентация, добавлен 14.04.2016В статье рассмотрены особенности использования программы 1С: Математический конструктор на уроках геометрии. Авторы описывают возможности программы, которые позволяют учащимся легко и интерактивно создавать геометрические фигуры, проводить исследования.
статья, добавлен 21.10.2024Описание примера использования Р-методологии для решения довольно специфических задач начертательной геометрии. Принципы использования метода как унифицированного инструмента обучения решению разных задач в образовательных учреждениях различных уровней.
статья, добавлен 18.09.2018- 106. Основы математики
Принцип Даламбера для рядов и двойных интегралов. Расчет радиуса сходимости степенного ряда. Задача Коши для дифференциальных уравнений. Линейная алгебра и аналитическая геометрия. Обратная матрица системы уравнений с использованием формулы Крамера.
контрольная работа, добавлен 26.02.2012 Системы линейных уравнений и неравенств. Аналитическая геометрия на плоскости. Числовая последовательность и ее предел. Основные теоремы теории вероятностей. Первообразная и неопределенный интеграл. Основы математической статистики. Закон больших чисел.
методичка, добавлен 23.09.2014Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.
методичка, добавлен 09.04.2012- 109. Линейная алгебра
Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.
курс лекций, добавлен 22.01.2013 Анализ фундаментальных проблем в направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Построение примеров йордановых супералгебр над произвольным полем. Арифметическое описание спектров.
научная работа, добавлен 28.10.2018Линейная и векторная алгебра, уравнения прямой на плоскости. Кривые второго порядка, дифференциальная геометрия и предел функции в точке. Виды интегралов и дифференциальные уравнения в частных производных. Дискретная математика и теория вероятностей.
учебное пособие, добавлен 11.02.2015Геометрия как одна из наиболее древних математических наук, возникновения и развитие знаний в данной сфере, современные достижения. Сущность и содержание теорем Чевы и Менелая, эффективность и целесообразность их применения теорем при решении задач.
научная работа, добавлен 03.05.2019Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.
учебное пособие, добавлен 25.11.2012- 114. Формирование общеучебных умений и навыков при решении задач на построение в курсе геометрии 7 класса
Теоретические основы формирования общеучебных умений и навыков. Формирование общеучебных умений и навыков при обучении математики. Конспекты уроков геометрии в 7 классе на тему "Задачи на построение", способствующие формированию общеучебных навыков.
курсовая работа, добавлен 10.01.2012 Декартова, полярная, цилиндрическая и сферическая системы координат на плоскости. Линии и прямые на плоскости. Угол между прямыми. Общее уравнение прямой. Выражение векторного произведения через координаты сомножителей. Угол между прямой и плоскостью.
методичка, добавлен 11.06.2014Определение математики и анализ этапов ее развития: элементарная математика; математика переменных величин; аналитическая геометрия; дифференциальное и интегральное исчисление. Развитие математики в России в 18-19 ст. Достижения современной математики.
реферат, добавлен 08.09.2015Периодизация этапов становления науки изучающей величины, количественные отношения и пространственные формы. История зарождения неевклидовой геометрии. Действия с комплексными числами. Фундаментальные представления об алгебре матриц и интегралов.
курс лекций, добавлен 26.01.2014- 118. Инженерная графика
Предмет начертательной геометрии. Методы центрального и параллельного проецирования. Точка, прямые и плоскости общего и частного положения на эпюре Монжа. Способы преобразования ортогональных проекций. Классификация поверхностей и многогранники.
учебное пособие, добавлен 17.12.2014 - 119. Применение фракталов
Знакомство с понятием, историей возникновения и исследованиями Бенуа Мандельброта. Представление о фракталах, встречающихся в нашей жизни. Нахождение подтверждения теории фрактальности окружающего мира. Фракталы в математике, геометрии и в реальном мире.
практическая работа, добавлен 12.07.2020 - 120. Аксиомы стереометрии
Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.
презентация, добавлен 13.04.2012 Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).
курсовая работа, добавлен 31.10.2010Исследование проекционных способов начертательной геометрии, дающих возможность получать наглядные изображения проектируемых объектов и комплексов. Рассмотрение аксиомы Евклида о параллельности. Изучение классификации проекций и примеров их построения.
реферат, добавлен 23.12.2013Понятие тригонометрии как раздела математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Применение науки в древности для расчётов в астрономии, геодезии и архитектуре. Особенности ее возникновения и стимул для развития.
реферат, добавлен 28.09.2014Поиск новых способов, создание новых методов формирования знаний. Изобретение десятичной позиционной системы записи чисел. Происхождение слова "синус". Происхождение термина "Геометрия". Истоки слова и термина "пирамида". Изменение символа параллельности.
статья, добавлен 09.04.2019Понятия общей топологии. Многообразия и касательные вектора. Тензоры: первые определения и свойства. Обычное частное дифференцирование. Сравнение касательных векторов в разных точках. Интегрирование дифференциальных форм. Расчет ковариантной производной.
курс лекций, добавлен 02.05.2014