Математичний аналіз
Характеристика прикладів числових множин. Особливості застосування похідної для доведення рівностей та нерівностей. Етапи побудови графіка функцій. Аналіз формул Ньютона-Лейбніца. Розгляд основних понять теорії ймовірностей та елементів комбінаторики.
Подобные документы
Творці математичного аналізу: Ньютон і Лейбніц. Особливості походження похідної та інтегралу. Фундаментальна праця Ньютона "Математичні початки натуральної філософії". Біном Ньютона і формула Ньютона-Лейбніца, їх особливість. Роботи Лейбніца з математики.
презентация, добавлен 11.03.2015Застосування методів аналітичної геометрії, векторної алгебри, тригонометрії. Застосування геометричних співвідношень до доведення нерівностей. Визначення нерівності трикутника. Застосування векторів та похідної. Дослідження екстремальних властивостей.
учебное пособие, добавлен 13.07.2017Вивчення основних понять множин, кардинальних чисел, відповідностей та відношень, їх видів, властивостей операцій над ними та методів відображення. Доведення теорем щодо їх властивостей, аналіз наслідків. Розгляд основних парадоксів теорії множин.
реферат, добавлен 19.11.2009Аналіз зв’язку класичної теорії ймовірностей, теорії нечітких множин і можливості застосування цієї теорії в економічних цілях. Визначення поняття усередненої міри, ризику та міри ризику на підставі теорії нечітких множин. Властивості функції належності.
статья, добавлен 30.01.2017Дослідження та систематизація основних понять комбінаторики. Характеристика методів комбінаторного аналізу та ілюстрація їх застосування на прикладах. Розгляд сутності та результатів теорії графів. Аналіз галузей застосування дискретної математики.
книга, добавлен 01.04.2014Основний принцип комбінаторики. Задачі на класичне означення ймовірності. Приклади розв'язку задач на операції з множинами. Застосування аксіом теорії ймовірностей. Умовні ймовірності і незалежні події. Особливості застосування випробування Бернуллі.
контрольная работа, добавлен 07.12.2011Класичне визначення ймовірності, умовна ймовірність. Зв'язок теорії ймовірностей з теорією множин. Теореми про додавання та множення ймовірностей довільних, несумісних та незалежних подій. Сутність теорем та формул Лапласа, Байєса, Бернуллі, Пуассона.
реферат, добавлен 16.12.2010Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.
дипломная работа, добавлен 29.01.2015Доведення нерівностей за опорою означення. Синтетичний метод доведення нерівностей. Нерівність про середнє арифметичне для двох чисел. Подання буквених виразів у вигляді суми, різниці. Розкладання буквених виразів на множники. Метод математичної індукції.
курсовая работа, добавлен 24.11.2019Основні елементи та принципи комбінаторики: принцип суми і добутку, їх характеристика. Особливості перестановки елементів, розміщення та комбінацій (їх властивостей). Поняття біному Ньютона, формули включень і виключень та їх основна характеристика.
реферат, добавлен 26.11.2014Встановлення більш точних оцінок логарифмічної похідної мероморфних і субгармонійних функцій. Доведення аналогу леми про логарифмічну похідну для субгармонійних функцій. Сучасні проблеми та теоретичні моделі в лінійних та диференціальних алгебрах.
автореферат, добавлен 12.07.2015Викладення диференціального числення функцій однієї змінної: означення похідної; геометричний, механічний і економічний змісти похідної; доведення формул диференціювання; похідні вищих порядків; диференціал функції; теореми диференціального числення.
курс лекций, добавлен 30.04.2014Розкриття питань застосування похідної для дослідження функцій на монотонність та екстремум, знаходження найбільшого та найменшого значення функцій. Розгляд прикладних задач на дослідження функцій, на складання рівнянь дотичної, нормалі та деяких інших.
курсовая работа, добавлен 17.02.2014Введення і вивчення класу числових функцій та дослідження застосувань цих функцій в задачах теорії зображень графів, теорії асоціативних алгебр та теорії графів. Зв'язок функцій t з кореневими системами графів. Техніка обчислення базисів Грьобнера.
автореферат, добавлен 28.08.2014Метод математичної індукції. Елементи комбінаторики. Елементи теорії імовірності (поняття про випадкову подію). Основні теореми ймовірностей (додавання, множення, формула Бейєса). Повторення випробувань. Формула Бернуллі (дисперсія випадкової величини).
лекция, добавлен 08.08.2014Розробка схеми кодування дійсних чисел та особливості структури сингулярного розподілу випадкових величин. Аналіз фрактальних властивостей множин (міра Хаусдорфа) в просторі нескінченних послідовностей символів згідно законів теорії ймовірностей.
автореферат, добавлен 28.08.2015Особливості алгоритмічного підходу до доведення теорем з допомогою логіки предикатів. Аналіз математичної логіки, її місце у математичній науці. Знайомство з буквами формальної арифметики. Значення застосування логіки предикатів для доведення теорем.
практическая работа, добавлен 08.05.2012Аналіз проблеми класифікації та створення електронних навчальних посібників і підручників. Аналіз прикладів розроблених у процесі дослідження програмних засобів з метою їх застосування під час навчання дискретної математики та теорії ймовірностей.
статья, добавлен 19.07.2018Дослідження видів найбільш розповсюджених математичних рівнянь. Приклади розв’язувань завдань на рух. Засоби вирішення задач, що містять в умові невідомі числові величини. Вирішування прикладів за допомогою нерівностей та цілочислових невідомих.
лекция, добавлен 26.01.2014Характеристика множини точок повної міри на відрізку, у яких має місце сильне підсумовування рядів Фур'є сумовних з вагою функцій по рівномірно обмежених системах функцій поліноміального вигляду. Аналіз багатовимірних аналогів нерівностей типу Лебега.
автореферат, добавлен 27.09.2014Елементи комбінаторики. Основні види з’єднань: розміщення, перестановки і сполучення. Випадкові події, імовірність подій: класичне визначення імовірності. Теореми додавання та множення ймовірностей. Формула повної імовірності. Формули Байєса та Бернуллі.
лекция, добавлен 26.01.2014Аналіз принципів побудови комп’ютерно-орієнтованої методичної системи навчання теорії нечітких множин та нечіткої логіки студентів комп’ютерних спеціальностей. Розгляд методів та форм організації навчання, що утворюють єдину функціональну структуру.
статья, добавлен 07.04.2018Поняття теорії множин, отримання нових множин. Доведення справедливості співвідношень між множинами з використанням дій над множинами, законів алгебри множин, діаграм Ейлера-Венна. Пошук прообразу вказаного елемента. Бінарні відношення на множинах.
контрольная работа, добавлен 19.08.2017Функції від одного випадкового аргументу. Композиція законів розподілу. Математичні моделі в теорії ймовірності. Ступінь точності випробування. Розрахунок ймовірності складніших подій. Виникнення теорії ймовірностей як науки, встановлення аксіоматики.
курсовая работа, добавлен 13.06.2016Аналіз математичних об'єктів зі складною локальною будовою: фрактальних множин, сингулярних мір, недиференційовних функцій, заданих у термінах рядів Остроградського 1-го виду. Встановлення умов нуль-мірності та додатності міри Лебега множин з цих класів.
автореферат, добавлен 30.08.2014